Основные формулы термодинамики. Что изучает химическая термодинамика

Разделы термодинамики

Современную феноменологическую термодинамику принято делить на равновесную (термодинамику равновесных процессов, она же термодинамика квазистатических процессов, она же классическая термодинамика) и неравновесную (термодинамику неравновесных процессов, она же термодинамика необратимых процессов). Равновесная термодинамика вводит в рассмотрение новые (т. е. те, которым не даётся определения в других разделах физики) переменные, такие как внутренняя энергия, температура, энтропия, химический потенциал, а также комбинации перечисленных величин. Все они носят название термодинамических параметров (величин). Предметом рассмотрения классической термодинамики служат связи термодинамических параметров друг с другом и с физическими переменными, вводимыми в рассмотрение в других разделах физики (масса, давление, поверхностное натяжение, сила тока и т. д.). Химические и фазовые реакции (фазовые переходы первого рода) также есть предмет изучения классической термодинамики, поскольку в этом случае рассматриваются связи между массами компонентов системы и их химическими потенциалами. Классическая термодинамика рассматривает термодинамические переменные как локальные в пространстве величины (на любую систему всегда действует, как минимум, одно силовое поле - поле тяготения). Время в явном виде в формулы классической термодинамики не входит. Это, однако, вовсе не означает, что классическая термодинамика рассматривает только состояния системы и не рассматривает их изменения, т. е. процессы. Просто предметом её внимания служат такие относительно медленно протекающие (квазистатические) процессы, для которых в каждый данный момент времени систему можно считать находящейся в состоянии термодинамического равновесия (равновесные процессы). Процесс можно считать квазистатическим, если время его протекания много меньше времени релаксации рассматриваемой системы.

В неравновесной термодинамике переменные рассматриваются как локальные не только в пространстве, но и во времени, т. е. в её формулы время может входить в явном виде. Любопытно, что посвящённая вопросам теплопроводности классическая работа Фурье «Аналитическая теория тепла» (1822) опередила не только появление неравновесной термодинамики как полноправного раздела науки (на столетие с лишним), но и работу Карно «Размышления о движущей силе огня и о машинах, способных развивать эту силу» (1824), которую принято считать точкой отсчёта в истории классической термодинамики.

2 - Постулат Кельвина. Процесс, при котором работа переходит в теплоту без каких-либо других изменений в системе, является необратимым, то есть невозможно превратить в работу всю теплоту, взятую от источника с однородной температурой, не проводя других изменений в системе.

Для энергии теорема Эйлера имеет вид:

Отсюда легко следует уравнение Гиббса - Дюгема :

Это уравнение показывает, что между интенсивными переменными существует одна связь, являющаяся следствием предположения об аддитивности свойств системы. В частности, непосредственным следствием соотношений Гиббса-Дюгема является выражение для термодинамического потенциала Гиббса через химические потенциалы компонент смеси:

Термодинамика сплошных сред

Приведённые выше формулировки аксиом термодинамики и соотношения для термодинамических потенциалов имеют место для простых моделей (сред) - для идеальных газов. Для более сложных моделей сред - упругих твердых сред, вязкоупругих сред, пластических сред, вязких жидкостей, сред с электромагнитными свойствами и других, законы термодинамики имеют более сложную формулировку, а термодинамические потенциалы формулируются в обобщенном виде с использованием тензоров . В физике сплошных сред (физике континуума) термодинамика рассматривается как её составная часть, вводящая в рассмотрение переменные, характеризующие тепловые (термические) и химические свойства среды, и их связь с другими физическими величинами, а аксиомы термодинамики включаются в общую систему аксиом.

Аксиоматика термодинамики

С аксиоматической точки зрения нулевое начало термодинамики, постулирующее существование абсолютной температуры, не является необходимым.

Первое начало вводит в рассмотрение новую физическую величину - внутреннюю энергию, и описывает (постулирует) свойства этой переменной, основное из которых состоит в том, что она необходима для соблюдения закона сохранения энергии; постулируется также экстенсивность внутренней энергии. Отсюда ясно, что корректно разбить изменение внутренней энергии в некотором процессе на теплоту и работу (тем более на теплоту, работу и работу переноса массы) невозможно без носящих достаточно произвольный характер дополнительных соглашений. К ним, в частности, принадлежат правила знаков для работы и теплоты. Другое соглашение состоит в том, что по формальным основаниям изменение внутренней энергии в химических реакциях (называемое в обиходе тепловым эффектом) мы вынуждены относить к работе (придуман даже специальный не используемый на практике термин «химическая работа»; в неравновесной термодинамике по формальной же причине теплоту трения причисляют к работе).

Подчеркнём, что математический аппарат термодинамики (да и любого другого раздела физики) зависит не только от законов природы, но и от разного рода соглашений (иногда формулируемых явно, иногда подразумеваемых), имеющих исторические корни и допускающих замену на другие соглашения, менее (а иногда и более) нам привычные. Степень произвола при формулировке соглашений обычно ограничена объективными либо субъективными факторами. Проиллюстрируем сказанное на примере замены реперных точек для температуры. Напрашивающийся вариант - переход к используемой в обыденной жизни температурной шкале Цельсия. Такая замена ведёт пусть к небольшому, но всё же усложнению привычных нам формул, да и выглядят они после этого менее изящно, хотя совершенно ясно, что расчёты как по новым, так и по старым формулам дают одинаковые результаты.

Изложенные соображения кажутся простыми и достаточно очевидными, если не банальными, но на практике о них частенько забывают. Применительно к первому началу игнорирование этих кажущихся избитыми истин привело к ситуации, которую Мёллер назвал «странным случаем в истории физики». А именно, модификация правила разбивки изменения внутренней энергии на теплоту и работу привела к изменению математического аппарата и послужила основанием для разгоревшегося во второй половине XX века спора о том, какая из двух логически безупречных версий СТО-релятивистской термодинамики с различными формулами преобразования для температуры - Планка (1907) или Отта (1963) - более правильна. Дискуссия теоретиков продолжалась несколько лет, пока де Бройль не показал, что расхождение между выводами Планка и Отта связано с произволом в определении теплоты, и их результаты не противоречат друг другу - просто авторы разговаривают на разных языках. В современных же вариантах релятивистской термодинамики вообще предпочитают иметь дело с лоренц-инвариантной абсолютной температурой (ван Кампен, Ландсберг, Шмутцер и др.). Почему же до публикации статьи Отта произвол в определениях понятий «работа» и «теплота» не бросался в глаза и никого не волновал? Да потому, что на практике, говоря о теплоте или работе некоего процесса, всегда имели в виду изменение в этом процессе одного из термодинамических потенциалов, обходя тем самым неопределённости в трактовке понятий «теплота» и «работа». То обстоятельство, что, например, совершаемую в химической реакции работу по традиции именовали «тепловым эффектом реакции», никого не смущало и не приводило ни к каким бросающимся в глаза парадоксальным или нежелательным последствиям.

Суть второго начала термодинамики с точки зрения аксиоматического подхода состоит в следующем. Для описания термических явлений переменной «внутренняя энергия» недостаточно, и для равновесных систем требуется ещё одна новая физическая величина в качестве независимой переменной. Таковой было бы логично выбрать температуру, но путь развития науки извилист, и второе начало в современной формулировке представляет собой набор постулатов о существовании энтропии и её свойствах; постулируется, например, экстенсивность энтропии. Один из важнейших постулатов гласит, что называемая термодинамической температурой функция внутренней энергии и энтропии имеет свойства абсолютной температуры. Такой подход позволяет обойти поминавшийся выше произвол в определениях понятий «работа» и «теплота», сводящий на нет кажущееся изящество классических формулировок второго начала. Отметим, что аксиоматику термодинамики можно строить, полагая независимой переменной не энтропию, а температуру. За это приходится приносить в жертву либо привычный нам математический аппарат термодинамики, к чему мы пока не готовы, либо стройность базовой системы аксиом.

Третье начало дополняет дополняет систему аксиом второго начала.

Аксиом (начал, постулатов), на которых базируется термодинамика, не три и даже не четыре (если считать нулевое начало), поэтому их уже не нумеруют. Наконец, помимо аксиом, соглашений и теорем в термодинамике есть еще и «принципы» (например, принцип термодинамической допустимости Путилова в равновесной термодинамике или принцип Кюри в неравновесной термодинамике), т. е. утверждения, не являющиеся соглашениями или теоремами, но и не претендующие на роль законов природы. Их не следует путать с аксиомами или теоремами термодинамики, в названиях которых по традиции используют слово «принцип» (принцип Нернста, принцип Ле-Шателье - Брауна).

Примечания

Парадоксы

См. также

Литература

  • Базаров И. П. Термодинамика. М.: Высшая школа, 1991, 376 с.
  • Базаров И. П., Геворкян Э. В., Николаев П. Н. Неравновесная термодинамика и физическая кинетика. М.: Изд-во МГУ, 1989.
  • Базаров И. П. Заблуждения и ошибки в термодинамике. Изд. 2-е испр. М.: Едиториал УРСС, 2003. 120 с.
  • Базаров И. П. Методологические проблемы статистической физики и термодинамики. М.: Изд-во МГУ, 1979.
  • Гиббс Дж. В. Термодинамика. Статистическая механика. Серия: Классики науки. М.: Наука 1982. 584 с.
  • Де Гроот С. Р. Термодинамика необратимых процессов. М.: Гос. Изд.-во техн.-теор. лит., 1956. 280 с.
  • Де Гроот С., Мазур П. Неравновесная термодинамика. М.: Мир, 1964. 456 с.
  • Гуров К. П. Феноменологическая термодинамика необратимых процессов (физические основы) . - М.: Наука, Глав. ред. физ-мат лит-ры, 1978. 128 с.
  • Дьярмати И. Неравновесная термодинамика. Теория поля и вариационные принципы. М.: Мир, 1974. 404 с.
  • Зубарев Д.Н. Неравновесная статистическая термодинамика. М .: Наука, 1971. 416 с.
  • Карно С., Клаузиус Р., Томсон В. (лорд Кельвин), Больцман Л., Смолуховский М. Под ред. и комментариями и предисловием: Тимирязев А. К. Второе начало термодинамики. Антология. Изд.2. Серия: Физико-математическое наследие: физика (термодинамика и статистическая механика). - М.: Изд-во ЛКИ, 2007. - 312 с.
  • Квасников И. А.

Основные формулы термодинамики и молекулярной физики, которые вам пригодятся.
Еще один отличный день для практических занятий по физике. Сегодня мы соберем вместе формулы, которые чаще всего используются при решении задач в термодинамике и молекулярной физике.

Итак, поехали. Попытаемся изложить законы и формулы термодинамики кратко.

Идеальный газ

Идеальный газ – это идеализация, как и материальная точка. Молекулы такого газа являются материальными точками, а соударения молекул – абсолютно упругие. Взаимодействием же молекул на расстоянии пренебрегаем. В задачах по термодинамике реальные газы часто принимаются за идеальные. Так гораздо легче жить, и не нужно иметь дела с массой новых членов в уравнениях.

Итак, что происходит с молекулами идеального газа? Да, они движутся! И резонно спросить, с какой скоростью? Конечно, помимо скорости молекул нас интересует еще и общее состояние нашего газа. Какое давление P он оказывает на стенки сосуда, какой объем V занимает, какая у него температура T.

Для того, чтобы узнать все это, есть уравнение состояния идеального газа, или уравнение Клапейрона-Менделеева

Здесь m – масса газа, M – его молекулярная масса (находим по таблице Менделеева), R – универсальная газовая постоянная, равная 8,3144598(48) Дж/(моль*кг).

Универсальная газовая потоянная может быть выражена через другие константы (постоянная Больцмана и число Авогадро )

Масс у , в свою очередь, можно вычислить, как произведение плотности и объема .

Основное уравнение молекулярно-кинетической теории (МКТ)

Как мы уже говорили, молекулы газа движутся, причем, чем выше температура – тем быстрее. Существует связь между давлением газа и средней кинетической энергией E его частиц. Эта связь называется основным уравнением молекулярно-кинетической теории и имеет вид:

Здесь n – концентрация молекул (отношение их количества к объему), E – средняя кинетическая энергия. Найти их, а также среднюю квадратичную скорость молекул можно, соответственно, по формулам:

Подставим энергию в первое уравнение, и получим еще один вид основного уравнения МКТ

Первое начало термодинамики. Формулы для изопроцессов

Напомним Вам, что первый закон термодинамики гласит: количество теплоты, переданное газу, идёт на изменение внутренней энергии газа U и на совершение газом работы A. Формула первого закона термодинамики записывается так:

Как известно, с газом что-то происходит, мы можем сжать его, можем нагреть. В данном случае нас интересуют такие процессы, которые протекают при одном постоянном параметре. Рассмотрим, как выглядит первое начало термодинамики в каждом из них.

Кстати! Для всех наших читателей сейчас действует скидка 10% на .

Изотермический процесс протекает при постоянной температуре. Тут работает закон Бойля-Мариотта: в изотермическом процессе давление газа обратно пропорционально его объёму. В изотермическом процессе:

протекает при поcтоянном объеме. Для этого процесса характерен закон Шарля: При постоянном объеме давление прямо пропорционально температуре. В изохорном процессе все тепло, подведенное к газу, идет на изменение его внутренней энергии.

идет при постоянном давлении. Закон Гей-Люссака гласит, что при постоянном давлении газа его объём прямо пропорционален температуре. При изобарном процессе тепло идет как на изменение внутренней энергии, так и на совершение газом работы.

. Адиабатный процесс – это такой процесс, который проходит без теплообмена с окружающей средой. Это значит, что формула первого закона термодинамики для адиабатного процесса выглядит так:

Внутренняя энергия одноатомного и двухатомного идеального газа

Теплоемкость

Удельная теплоемкость равна количеству теплоты, которое необходимо для нагревания одного килограмма вещества на один градус Цельсия.

Помимо удельной теплоемкости, есть молярная теплоемкость (количество теплоты, необходимое для нагревания одного моля вещества на один градус) при постоянном объеме, и молярная теплоемкость при постоянном давлении. В формулах ниже, i – число степеней свободы молекул газа. Для одноатомного газа i=3, для двухатомного – 5.

Тепловые машины. Формула КПД в термодинамике

Тепловая машина , в простейшем случае, состоит из нагревателя, холодильника и рабочего тела. Нагреватель сообщает тепло рабочему телу, оно совершает работу, затем охлаждается холодильником, и все повторяется вно вь. Типичным примером тепловой машины является двигатель внутреннего сгорания.

Коэффициент полезного действия тепловой машины вычисляется по формуле

Вот мы и собрали основные формулы термодинамики, которые пригодятся в решении задач. Конечно, это не все все формулы из темы термодинамика, но их знание действительно может сослужить хорошую службу. А если возникнут вопросы – помните о студенческом сервисе , специалисты которого готовы в любой момент прийти на выручку.

Термодинамика - наука, которая изучает тепловые явления, происходящие в телах, не связывая их с молекулярным строением вещества.

В термодинамике считается, что все тепловые процессы в телах характеризуются только лишь макроскопическими параметрами - давлением, объёмом и температурой. А так как их невозможно применить к отдельно взятым молекулам или атомам, то, в отличие от молекулярно-кинетической теории, в термодинамике молекулярное строение вещества в тепловых процессах не учитывается.

Все понятия термодинамики сформулированы как обобщение фактов, наблюдаемых в ходе экспериментов. Из-за этого её называют феноменологической (описательной) теорией тепла.

Термодинамические системы

Термодинамика описывает тепловые процессы, происходящие в макроскопических системах. Такие системы состоят из огромного количества частиц - молекул и атомов, и называются термодинамическими.

Термодинамической системой можно считать любой объект, который можно увидеть невооружённым глазом или с помощью микроскопов, телескопов и других оптических приборов. Главное, чтобы размеры системы в пространстве и время её существования позволяли провести измерения её параметров - температуры, давления, массы, химического состава элементов и др., с помощью приборов, не реагирующих на воздействие отдельных молекул (манометров, термометров и др.).

Для химиков термодинамическкой системой является смесь химических веществ, взаимодействующих между собой в процессе химической реакции. Астрофизики назовут такой системой небесное тело. Смесь горючего с воздухом в автомобильном двигателе, земной шар, наше тело, пишущая ручка, тетрадь, станок и др. - это также термодинамические системы.

Каждая термодинамическая система отделена от окружающей среды границами. Они могут быть реальными - стеклянные стенки пробирки с химическим веществом, корпус цилиндра в двигателе и т.п. А могут быть и условными, когда, например, изучают образование облака в атмосфере.

Если такая система не обменивается с внешней средой ни энергией, ни веществом, то её называют изолированной или замкнутой .

Если же система обменивается с внешней средой энергией, но не обменивается веществом, то она называется закрытой .

Открытая система обменивается с внешней средой и энергией, и веществом.

Термодинамическое равновесие

Это понятие также введено в термодинамику, как обобщение результатов экспериментов.

Термодинамическим равновесием называют такое состояние системы, при котором все её макроскопические величины - температура, давление, объём и энтропия - не изменяются во времени, если система является изолированной. В такое состояние может самопроизвольно перейти любая замкнутая термодинамическая система, если остаются постоянными все внешние параметры.

Самый простой пример системы в состоянии термодинамического равновесия - термос с горячим чаем. Температура в нём одинакова в любой точке жидкости. Хотя термос можно назвать изолированной системой лишь приблизительно.

Любая замкнутая термодинамическая система самопроизвольно стремится перейти в термодинамическое равновесие, если не меняются внешние параметры.

Термодинамический процесс

Если меняется хотя бы один из макроскопических параметров, то говорят, что в системе происходит термодинамический процесс . Такой процесс может возникнуть, если изменяются внешние параметры или система начинает получать или передавать энергию. В результате она переходит в другое состояние.

Вспомним пример с чаем в термосе. Если мы опустим в чай кусочек льда и закроем термос, то сразу же появится разница в температурах в разных частях жидкости. Жидкость в термосе будет стремиться к выравниванию температур. Из областей с более высокой температурой тепло будет передаваться туда, где температура ниже. То есть, будет происходить термодинамический процесс. В конце концов, температура чая в термосе снова станет одинаковой. Но она уже будет отличаться от первоначальной температуры. Состояние системы изменилось, так как изменилась её температура.

Термодинамический процесс происходит, когда ночью остывает песок, нагретый на пляже в жаркий день. К утру его температура понижается. Но как только взойдёт солнце, процесс нагревания начнётся снова.

Внутренняя энергия

Одно из главных понятий термодинамики - внутренняя энергия .

Все макроскопические тела обладают внутренней энергией, которая является суммой кинетических и потенциальных энергий всех частиц (атомов и молекул), из которых состоит тело. Эти частицы взаимодействуют только между собой и не взаимодействуют с частицами окружающей среды. Внутренняя энергия зависит от кинетической и потенциальной энергии частиц и не зависит от положения самого тела.

U = E k +E p

Внутренняя энергия изменяется с изменением температуры. Молекулярно-кинетическая теория объясняет это изменением скорости движения частиц вещества. Если температура тела растёт, то растёт и скорость движения частиц, расстояние между ними становится больше. Следовательно, увеличивается их кинетическая и потенциальная энергия. При понижении температуры происходит обратный процесс.

Для термодинамики важнее не величина внутренней энергии, а её изменение. А изменить внутреннюю энергию можно с помощью процесса теплопередачи или совершая механическую работу.

Изменение внутренней энергии механической работой

Бенджамин Румфорд

Внутреннюю энергию тела можно изменить, совершив над ней механическую работу. Если работа совершается над телом, то механическая энергия превращается во внутреннюю энергию. А если работу совершает тело, то его внутренняя энергия превращается в механическую.

Почти до конца XIX века считалось, что существует невесомое вещество - теплород, которое передаёт тепло от тела к телу. Чем больше теплорода втекает в тело, тем теплее оно будет, и наоборот.

Однако в 1798 г. англо-американский учёный граф Бенджамин Румфорд стал сомневаться в теории теплорода. Причиной тому были нагревания стволов пушек при сверлении. Он предположил, что причиной нагревания является механическая работа, которая совершается во время трения сверла о ствол.

И Румфорд провёл эксперимент. Чтобы увеличить силу трение, взяли тупое сверло, а сам ствол поместили в бочку с водой. К концу третьего часа сверления вода в бочке закипела. Это означало, что ствол получил тепло при совершении механической работы над ним.

Теплопередача

Теплопередачей называют физический процесс передачи тепловой энергии (теплоты) от одного тела к другому либо при непосредственном контакте, либо через разделяющую перегородку. Как правило, теплота передаётся от более тёплого тела к более холодному. Это процесс заканчивается, когда система приходит в состояние термодинамического равновесия.

Энергия, которую получает или отдаёт тело при теплопередаче, называется количеством теплоты .

По способу передачи теплоты теплообмен можно разделить на 3 вида: теплопроводность, конвенция, тепловое излучение.

Теплопроводность

Если между телами или частями тел существует температурная разница, то между ними будет происходить процесс теплопередачи. Теплопроводностью называют процесс переноса внутренней энергии от более нагретого тела (или его части) к менее нагретому телу (или его части).

К примеру, нагрев на огне один конец стального прута, через некоторое время мы почувствуем, что и другой его конец также становится тёплым.

Стеклянную палочку, один конец которой раскалён, мы легко держим за другой конец, не обжигаясь. Но если мы попробуем проделать такой же эксперимент с железным прутом, у нас ничего не получится.

Разные вещества по-разному проводят тепло. Каждое из них имеет свой коэффициент теплопроводности , или удельной проводимости , численно равный количеству теплоты, которая проходит через образец толщиной 1 м, площадью 1 м 2 за 1 секунду. За единицу температуры принимают 1 К.

Лучше всего проводят тепло металлы. Это их свойство мы используем в быту, готовя пищу в металлических кастрюлях или на сковородках. А вот их ручки не должны нагреваться. Поэтому их делают из материалов с плохой теплопроводностью.

Теплопроводность жидкостей меньше. А газы обладают слабой теплопроводностью.

Мех животных также плохо проводит тепло. Благодаря этому они не перегреваются в жаркую погоду и не замерзают в холодную.

Конвенция

При конвенции теплота передаётся струями и потоками газа или жидкости. В твёрдых телах конвенции нет.

Как возникает конвенция в жидкости? Когда мы ставим на огонь чайник с водой, нижний слой жидкости нагревается, его плотность уменьшается, он движется вверх. Его место занимает более холодный слой воды. Через какое-то время он тоже нагреется и тоже поменяется местами с более холодным слоем. И т.д.

Подобный процесс происходит и в газах. Не случайно батареи отопления размещают в нижней части комнаты. Ведь нагретый воздух всегда поднимается в верхнюю часть комнаты. А нижний, холодный, наоборот, опускается. Затем он нагревается также и вновь поднимается, а верхний слой за это время остывает и опускается.

Конвенция бывает естественная и принудительная.

Естественная конвенция постоянно происходит в атмосфере. В результате этого происходят постоянные перемещения тёплых воздушных масс вверх, а холодных - вниз. В результате возникает ветер, облака и другие природные явления.

Когда естественной конвенции недостаточно, применяю принудительную конвенцию. Например, потоки тёплого воздуха перемещают в комнате с помощью лопастей вентилятора.

Тепловое излучение

Солнце нагревает Землю. При этом не происходит ни теплопередачи, ни конвенции. Так почему же тела получают тепло?

Дело в том, что Солнце является источником теплового излучения.

Тепловое излучение - это электромагнитное излучение, возникающее за счёт внутренней энергии тела. Все окружающие нас тела излучают тепловую энергию. Это может быть видимое световое излучение настольной лампы, или источники невидимых ультрафиолетовых, инфракрасных или гамма-лучей.

Но тела не только излучают тепло. Они его также и поглощают. Одни в большей степени, другие в меньшей. Причём тёмные тела и нагреваются, и охлаждаются быстрее, чем светлые. В жаркую погоду мы стараемся надеть светлую одежду, потому что она поглощает меньше тепла, чем одежда тёмных тонов. Автомобиль тёмного цвета нагревается на солнце гораздо быстрее, чем стоящий с ним рядом автомобиль, имеющий светлую окраску.

Это свойство веществ по-разному поглощать и излучать тепло используется при создании систем ночного видения, систем самонаведения ракет на цель и др.

Введение

Дисциплины техническая термодинамика и теория тепло - и массообмена формируют теоретическую базу для освоения дисциплин специального цикла по направлениям "Энергомашиностроение" и "Теплоэнергетика".

В первой части рассматриваются основные понятия термодинамики, приложение первого закона термодинамики к закрытым, открытым термодинамическим системам и системам с переменной массой. Изучаются равновесные состояния и квазиравновесные процессы в макроскопических системах. Значительное внимание уделяется второму закону термодинамики и его применению к необратимым процессам, вскрываются причины необратимости и ее влияние на потерю работоспособности (эксергии) системы. Подробно рассматриваются газовые циклы и реактивные двигатели. Уделяется внимание условиям равновесия в однородной и двухфазной системах, фазовым переходам при плоской и искривленной границах раздела фаз. Приводятся основные положения теории образования новой фазы. Рассматриваются свойства реальных газов и паров, вопросы дросселирования реальных газов и паров, процессы, протекающие в паре и влажном воздухе. Представлен достаточно подробный материал по паровым и комбинированным циклам теплоэнергетических установок, рассматриваются способы повышения их эффективности, проведен анализ циклов паротурбинной и газотурбинной установок с учетом необратимых потерь с помощью энтропийного и эксергетического методов. Вопросы непосредственного преобразования теплоты в электрическую энергию изложены в конспективной форме на основе упрощенных тепловых схем без рассмотрения состояния плазмы и процессов в ней. Даются основы термоэлектрического генератора. Рассматриваются идеальные циклы холодильных машин, тепловых насосов и методы ожижения газов. В разделе "Основы химической термодинамики" излагаются законы и положения, касающиеся процессов превращения одних веществ в другие. Даны основные понятия неравновесной термодинамики. В приложении Iприводятся программы расчета на ЭВМ газотурбинной установки с регенерацией теплоты и паротурбинной установки с оптимизацией параметров рабочего тела на примере геотермальной тепловой электрической станции. Приводится список литературы для более подробного изучения законов, методов и истории развития термодинамики.

Вторая часть курса содержит основные законы и положения теории тепло- и массообмена в природе и включает такие разделы как стационарная и нестационарная теплопроводность, конвективный теплообмен в однородных средах, теплоотдача при изменении агрегатного состояния вещества, массоперенос в двухкомпонентных средах, лучистый теплообмен, основы расчета теплообменных аппаратов рекуперативного типа.

Основные явления тепло- и массопереноса, имеющие место в природе, рассмотрены достаточно подробно на основе упрощенных физических моделей с получением расчетных формул. Такой академический подход, на наш взгляд, способствует развитию у студента творческого мышления: он видит, как создается физическая модель, как она упрощается путем введения обоснованных допущений для получения аналитического решения.

Так как в настоящее время трудно представить решение научных и инженерных задач без использования ЭВМ, то в разделе "Численные методы решения задач теплопроводности" показывается, как создаются уравнения в конечно-разностной форме для различных “узлов“ изучаемого тела. Рассматриваются вопросы устойчивости разностных схем. В приложении IIприводятся программы расчета двумерного температурного поля итерационным и матричным методами, а также текст программы расчета теплообменного аппарата для выполнения курсовой работы по методике .

Список литературы, приведенный в конце лекций, позволяет студенту более глубоко изучить интересующие его вопросы, которые в ряде случаев изложены в конспективной форме.

Часть I. Техническая термодинамика

1. Основные понятия термодинамики

Термодинамика - это наука, изучающая законы превращения энергии в различных процессах, сопровождающихся тепловыми эффектами. Термодинамика - дедуктивная наука: она базируется на основных законах природы (первом и втором началах термодинамики) и носит феноменологический характер, привлекая для своих исследований опытные данные.

Краткий исторический очерк развития термодинамики

Термодинамика как наука возникла в начале XIXвека. Основные задачи, которые она должна была решать - это установление количественной связи между теплотой и работой и повышение тепловой эффективности паровых машин, которые стали широко использоваться в промышленности. В 1824 году французский инженер Сади Карно опубликовал трактат “ Размышления о движущей силе огня и машинах, способных развивать эту силу“11. В этом научном труде он впервые доказывает, что “движущая сила огня“ (работа) зависит от величины температуры “горячего” и “холодного “ источников теплоты, и что более эффективными являются паровые машины высокого давления, в которых по его словам “...большее падение “теплорода” (под теплородом понимали все проникающее вещество)”. Еще тогда он пишет о причинах потери движущей силы: “...от бесполезного восстановления равновесия теплорода “. Таким образом, в работе Карно были заложены основные положения первого и второго законов термодинамики.

В 1842 году Роберт Майер устанавливает связь между теплотой и работой, определив механический эквивалент теплоты Джемс Джоуль в 1843 году, проведя уникальный эксперимент, находит тепловой эквивалент работывеличина которого до настоящего времени остается практически неизменной. Работы Майера и Джоуля устанавливают частный случай первого начала термодинамики - закона отражающего количественную сторону сохранения и превращения энергии.

Рудольф Клаузиус в 1854 году, рассматривая обратимый круговой процесс, вводит в термодинамику новую функцию состояния - энтропию S и тем самым устанавливает второй закон термодинамики для обратимых процессовПозднее Макс Планк в своей докторской диссертации показывает, что энтропия может быть использована при анализе необратимых процессов (с чем был не согласен Роберт Кирхгоф)14. В общем случае второе начало имеет види характеризует качественную сторону в процессах превращения энергии.

Виллиам Томсон (лорд Кельвин) вводит понятие абсолютной (термодинамической) температуры, которая является термодинамическим потенциалом.

Джозайя Виллард Гиббс создает новый метод термодинамических исследований - метод термодинамических потенциалов, устанавливает условия термодинамического равновесия. Развивает теорию фазовых переходов (правило фаз Гиббса).

В 1906 году Вальтер Герман Нернст (1864-1941) на основании опытных данных открывает третий закон термодинамики (теорема Нернста). Согласно этой теореме при температурах, стремящихся к абсолютному нулю, равновесные изотермические процессы протекают без изменения энтропии, то есть . В этом случае энтропия перестает быть функцией состояния и стремится к некоторой постоянной величине, не зависящей от параметров состояния.

В работах Д.И.Менделеева впервые используется “критическая температура”, при которой коэффициент поверхностного натяжения равен нулю.

В.А. Михельсон и Б.Б. Голицын внесли значительный вклад в термодинамику излучения.

Большой вклад в развитие термодинамики внесли также русские ученые: Д.П. Коновалов и Н.С. Курнаков (термодинамические методоы в физической химии), Н.Н. Боголюбов и М.А. Леонтович (статистическая термодинамика, неравновесные состояния), Л.Д. Ландау (теория сверхтекучести), В.К. Семенченко (термодинамическая теория растворов).

Термодинамическая система

Под термодинамической системой понимают совокупность макротел, находящихся между собой и окружающей средой в тепловом и механическом взаимодействии. Термодинамическая система (ТС) может быть закрытой (с подвижной или неподвижной границами) и открытой, когда через нее проходит поток массы. Если ТС не обменивается теплотой с окружающей средой, то такая система называется адиабатической. ТС может быть гомогенной и гетерогенной. В гомогенной системе свойства вещества остаются неизменными во всех точках или плавно изменяются, например, в поле гравитационных или иных массовых сил. Если ТС состоит из подсистем с различными физическими свойствами, то такая система называется гетерогенной. В этом случае считают, что физические свойства на границе подсистем изменяются скачком. В действительности изменение свойств происходит на длине свободного пробега молекулы.

Термодинамический метод исследования

Термодинамика рассматривает системы, состоящие из большого, но конечного числа частиц, она не изучает процессы на молекулярном уровне и оперирует макровеличинами - термодинамическими параметрами.

Термодинамический процесс

Совокупность последовательных состояний, проходящих термодинамической системой, называется термодинамическим процессом. Если ТС проходит практически равновесные состояния, то такой процесс называется квазистатическим. В пределе, когда процесс протекает бесконечно медленно, то имеем равновесный или обратимый процесс. Вообще под обратимым понимают такой процесс, когда при совершении прямого и обратного процесса ТС приходит в исходное состояние, а в окружающей среде не происходит ни каких изменений. В диаграммах состояния можно изобразить только квазистатические или равновесные процессы. Под квазистатическим процессом понимают такой процесс, когда скорость процесса намного меньше скорости релаксации

где a - любой термодинамический параметр (p , T , v ) ; - время; - время релаксации - время, за которое во всех точках ТС установится термодинамическое равновесие, то есть будем иметь одинаковые физические свойства (для газовсекунд).

Параметры термодинамической системы

Это макровеличины, характеризующие физическое состояние термодинамической системы. К ним относятся температураT , давление -p , объем -V (термические параметры).

Температура является одним из основных термических параметров. Температура есть мера нагретости тела. Температура тела, измеренная термометром, называется эмпирической (t ). К понятию абсолютной температуры (T ) приводит кинетическая теория газов. Между средней кинетической энергией поступательного движения молекул и температурой существует связь

(1.2)

где m - масса молекулы;
- средняя скорость поступательного движения молекул;k = 1,38 10 - 23 - постоянная Больцмана (универсальная газовая постоянная на одну молекулу газа) ;R 0 = 8314- универсальная газовая постоянная;N 0 = 6,022810 26 - число Авогадро (число молекул в одном киломоле). Из (1.2) следует, чтоT является статистической величиной, характеризующей состояние большого числа молекул. Между абсолютной и эмпирической температурой, измеренной в градусах Цельсия, существует зависимость

(1.3)

Давление , как и температура, - статистическая величина. Из курса молекулярной физики известно, что давление газа на стенки сосуда можно рассчитать по формуле

H/м 2 (1.4)

где n =N 0 /V  - число молекул, заключенных в объеме одного киломоля;

V  = 22,4 м 3 / кмоль - объем одного киломоля при нормальных условиях ( p н = 760 мм. рт. ст. = 1,01310 5 Па,t н = 0 С) ;- коэффициент сжимаемости.

С учетом (1.2) перепишем (1.4) в виде

. (1.5)

Для идеального газа, молекулы которого представляются в виде материальных точек, имеющих массу и не имеющих объема, а взаимодействие осуществляется только за счет упругих соударений (= 1), можно написать

pV =R 0 T . (1.6)

Выражение (1.6) является термическим уравнением состояния идеального газа для одного киломоля. Для М киломолей

pV = MR 0 T . (1.7)

Уравнение состояния в форме (1.7) носит название Клапейрона-Менделеева.

Так как масса газа

G =M , (1.8)

где - молекулярная масса газа, кг/ кмоль, аR = R 0 / , то (1.7) можно переписать в форме Клапейрона

pV = GRT . (1.9)

Разделив уравнение (1.9) на массу газа, получим

pv = RT ,

где v = V / G - удельный объем газа, м 3 /кг. Удельный объем газа связан с плотностью соотношением = 1/ v , тогда

p = RT . (1.10)

Таким образом, чем выше плотность и температура идеального газа, тем больше давление. Давление, входящее в уравнение состояния, называется абсолютным и измеряется в Паскалях (Па=Н/м 2). Если давление газа в сосуде выше давления окружающей средыр ос (барометрического давления), то абсолютное давление

р=р ман + р ос , (1.11)

где р ман изб - давление измеренное манометром (манометр измеряет избыточное давление между давлением в сосуде и окружающей средой).

В случае, когда давление газа в сосуде меньше давления окружающей среды, то используется вакууметр, тогда

р=р ос - р вак. (1.12)

Сказанное может быть представлено в графическом виде (см. рис.1.1).

Удельный объем так же какТ ир , характеризует физичское состояние тела

(1.13)

Термодинамические параметры (ТП) могут быть экстенсивными и интенсивными. К экстенсивным параметрам относятся внутренняя энергия газа U , энтальпияI = U + pV , энтропияS . Эти параметры обладают свойствами аддитивности (их можно складывать). Интенсивными параметрами являютсяp , T , удельный объемv - они не обладают свойствами аддитивности.

Термодинамика – наука о взаимопревращениях различных форм энергии и законах этих превращений. Термодинамика базируется только на экспериментально обнаруженных объективных закономерностях, выраженных в двух основных началах термодинамики.

Термодинамика изучает:1.Переходы энергии из одной формы в другую, от одной части системы к другой; 2.Энергетические эффекты, сопровождающие различные физические и химические процессы и зависимость их от условий протекания данных процессов; 3.Возможность, направление и пределы самопроизвольного протекания процессов в рассматриваемых условиях. Необходимо отметить, что классическая термодинамика имеет следующие ограничения:

1.Термодинамика не рассматривает внутреннее строение тел и механизм протекающих в них процессов; 2.Классическая термодинамика изучает только макроскопические системы;

3.В термодинамике отсутствует понятие "время".

Основные понятия термодинамики.

Термодинамическая система – тело или группа тел, находящихся во взаимодействии, мысленно или реально обособленные от окружающей среды.

Гомогенная система – система, внутри которой нет поверхностей, разделяющих отличающиеся по свойствам части системы (фазы).

Гетерогенная система – система, внутри которой присутствуют поверхности, разделяющие отличающиеся по свойствам части системы.

Фаза – совокупность гомогенных частей гетерогенной системы, одинаковых по физическим и химическим свойствам, отделённая от других частей системы видимыми поверхностями раздела.

Изолированная система – система, которая не обменивается с окружающей средой ни веществом, ни энергией.Закрытая система – система, которая обменивается с окружающей средой энергией, но не обменивается веществом.

Открытая система – система, которая обменивается с окружающей средой и веществом, и энергией.Совокупность всех физических и химических свойств системы характеризует её термодинамическое состояние . Все величины, характеризующие какое-либо макроскопическое свойство рассматриваемой системы – параметры состояния . Опытным путем установлено, что для однозначной характеристики данной системы необходимо использовать некоторое число параметров, называемых независимыми ; все остальные параметры рассматриваются как функции независимых параметров. В качестве независимых параметров состояния обычно выбирают параметры, поддающиеся непосредственному измерению, например температуру, давление, концентрацию и т.д. Всякое изменение термодинамического состояния системы (изменения хотя бы одного параметра состояния) есть термодинамический процесс .

Обратимый процесс – процесс, допускающий возможность возвращения системы в исходное состояние без того, чтобы в окружающей среде остались какие-либо изменения.

Равновесный процесс – процесс, при котором система проходит через непрерывный ряд равновесных состояний.

Энергия - мера способности системы совершать работу; общая качественная мера движения и взаимодействия материи. Энергия является неотъемлемым свойством материи. Различают потенциальную энергию , обусловленную положением тела в поле некоторых сил, и кинетическую энергию , обусловленную изменением положения тела в пространстве.

Внутренняя энергия системы – сумма кинетической и потенциальной энергии всех частиц, составляющих систему. Можно также определить внутреннюю энергию системы как её полную энергию за вычетом кинетической и потенциальной энергии системы как целого.

4.Основные формулировки первого начала термодинамики. Первое начало термодинамики представляет собой закон сохранения энергии, один из всеобщих законов природы (наряду с законами сохранения импульса, заряда и симметрии):Энергия неуничтожаема и несотворяема; она может только переходить из одной формы в другую в эквивалентных соотношениях. Первое начало термодинамики представляет собой постулат – оно не может быть доказано логическим путем или выведено из каких-либо более общих положений. Истинность этого постулата подтверждается тем, что ни одно из его следствий не находится в противоречии с опытом. Приведем еще некоторые формулировки первого начала термодинамики:

Полная энергия изолированной системы постоянна;Невозможен вечный двигатель первого рода (двигатель, совершающий работу без затраты энергии). Первое начало термодинамики устанавливает соотношение между теплотой Q, работой А и изменением внутренней энергии системы ΔU:

Изменение внутренней энергии системы равно количеству сообщенной системе теплоты минус количество работы, совершенной системой против внешних сил. (1) (2) Уравнение (I.1) является математической записью 1-го начала термодинамики для конечного, уравнение (I.2) – для бесконечно малого изменения состояния системы.

Внутренняя энергия является функцией состояния; это означает, что изменение внутренней энергии ΔU не зависит от пути перехода системы из состояния 1 в состояние 2 и равно разности величин внутренней энергии U 2 и U 1 в этих состояниях:

Следует отметить, что определить абсолютное значение внутренней энергии системы невозможно; термодинамику интересует лишь изменение внутренней энергии в ходе какого-либо процесса.


5.Применение первого начала термодинамики к различным процессам .

Рассмотрим приложение первого начала термодинамики для определения работы, совершаемой системой при различных термодинамических процессах.

Изохорный процесс (V = const; ΔV =0).

Поскольку работа расширения равна произведению давления и изменения объема, для изохорного процесса получаем:

Изотермический процесс (Т =const).

Из уравнения состояния одного моля идеального газа получаем:

(I.6)Отсюда:

Проинтегрировав выражение (I.6) от V 1 до V 2 , получим

Изобарный процесс (Р =const).

Подставляя полученные выражения для работы различных процессов в уравнение (I.1), для тепловых эффектов этих процессов получим:

В уравнении (I.12) сгруппируем переменные с одинаковыми индексами. Получаем:

Введем новую функцию состояния системы – энтальпию H , тождественно равную сумме внутренней энергии и произведения давления на объем:

Тогда выражение (I.13) преобразуется к следующему виду:

Т.о., тепловой эффект изобарного процесса равен изменению энтальпии системы.

Адиабатический процесс (Q =0).

При адиабатическом процессе работа расширения совершается за счёт уменьшения внутренней энергии газа:

В случае если C v не зависит от температуры (что справедливо для многих реальных газов), работа, произведённая газом при его адиабатическом расширении, прямо пропорциональна разности температур:

Закон Гесса.

Тепловые эффекты, сопровождающие протекание химических реакций, являются предметом одного из разделов химической термодинамики – термохимии. Определим некоторые понятия термохимии.

Теплота образования вещества – тепловой эффект реакции образования 1 моля сложного вещества из простых. Теплоты образования простых веществ принимаются равными нулю.

Теплота сгорания вещества – тепловой эффект реакции окисления 1 моля вещества в избытке кислорода до высших устойчивых оксидов.

Теплота растворения – тепловой эффект процесса растворения 1 моля вещества в бесконечно большом количестве растворителя. Теплота растворения складывается из двух составляющих: теплоты разрушения кристаллической решетки (для твердого вещества) и теплоты сольватации:

Поскольку ΔН кр.реш всегда положительно (на разрушение кристаллической решетки необходимо затратить энергию), а ΔН сольв всегда отрицательно, знак ΔН раств определяется соотношением абсолютных величин ΔН кр.реш. и ΔН сольв:

Основным законом термохимии является закон Гесса, являющийся частным случаем первого начала термодинамики:

Тепловой эффект химической реакции, проводимой в изобарно-изотермических или изохорно-изотермических условиях, зависит только от вида и состояния исходных веществ и продуктов реакции и не зависит от пути её протекания.

Выше было показано, что изменение энтальпии ΔН (тепловой эффект изобарного процесса Q p) и изменение внутренней энергии ΔU(тепловой эффект изохорного процесса Q v) не зависят от пути, по которому система переходит из начального состояния в конечное.

Согласно закону Гесса, тепловые эффекты всех этих реакций связаны следующим соотношением:

Следствие из закона Гесса.

Практическое значение закона Гесса состоит в том, что он позволяет рассчитывать тепловые эффекты химических процессов. В термохимических расчетах обычно используют ряд следствий из закона Гесса:

1. Тепловой эффект прямой реакции равен по величине и противоположен по знаку тепловому эффекту обратной реакции (закон Лавуазье – Лапласа).2. Для двух реакций, имеющих одинаковые исходные, но разные конечные состояния, разность тепловых эффектов представляет собой тепловой эффект перехода из одного конечного состояния в другое.

С + О 2 ––> СО + 1 / 2 О 2 ΔН 1

С + О 2 ––> СО 2 ΔН 2

СО + 1 / 2 О 2 ––> СО 2 ΔН 3

3. Для двух реакций, имеющих одинаковые конечные, но разные исходные состояния, разность тепловых эффектов представляет собой тепловой эффект перехода из одного исходного состояния в другое.

С (алмаз) + О 2 ––> СО 2 ΔН 1

С (графит) + О 2 ––> СО 2 ΔН 2

С (алмаз) ––> С (графит) ΔН 3

4. Тепловой эффект химической реакции равен разности сумм теплот образования продуктов реакции и исходных веществ, умноженных на стехиометрические коэффициенты.

5. Тепловой эффект химической реакции равен разности сумм теплот сгорания исходных веществ и продуктов реакции, умноженных на стехиометрические коэффициенты.


8. Зависимость теплового эффекта реакции от температуры. Закон Кирхгоффа

В общем случае тепловой эффект химической реакции зависит от температуры и давления, при которых проводится реакция. Влиянием давления на ΔН и ΔU реакции обычно пренебрегают. Влияние температуры на величины тепловых эффектов описывает закон Кирхгоффа:

Температурный коэффициент теплового эффекта химической реакции равен изменению теплоемкости системы в ходе реакции. Продифференцируем ΔН и ΔU по температуре при постоянных давлении и температуре соответственно:

Производные энтальпии и внутренней энергии системы по температуре есть теплоемкости системы в изобарных и изохорных условиях C p и C v соответственно:

Подставив выражения (I.24, I.25) в (I.22, I.23), получаем математическую запись закона Кирхгоффа:

Для химического процесса изменение теплоемкости задается изменением состава системы и рассчитывается следующим образом.

2024 med103.ru. Я самая красивая. Мода и стиль. Разные хитрости. Уход за лицом.