Диэлектрическая проницаемость 2. Диэлектрическая проницаемость воздуха как физическая величина

Относи́тельная диэлектри́ческая проница́емость среды ε - безразмерная физическая величина, характеризующая свойства изолирующей (диэлектрической) среды. Связана с эффектом поляризации диэлектриков под действием электрического поля (и с характеризующей этот эффект величиной диэлектрической восприимчивости среды). Величина ε показывает, во сколько раз сила взаимодействия двух электрических зарядов в среде меньше, чем в вакууме. Относительная диэлектрическая проницаемость воздуха и большинства других газов в нормальных условиях близка к единице (в силу их низкой плотности). Для большинства твёрдых или жидких диэлектриков относительная диэлектрическая проницаемость лежит в диапазоне от 2 до 8 (для статического поля). Диэлектрическая постоянная воды в статическом поле достаточно высока - около 80. Велики её значения для веществ с молекулами, обладающими большим электрическим диполем. Относительная диэлектрическая проницаемость сегнетоэлектриков составляет десятки и сотни тысяч.

Практическое применение

Диэлектрическая проницаемость диэлектриков является одним из основных параметров при разработке электрических конденсаторов . Использование материалов с высокой диэлектрической проницаемостью позволяют существенно снизить физические размеры конденсаторов.

Параметр диэлектрической проницаемости учитывается при разработке печатных плат . Значение диэлектрической проницаемости вещества между слоями в сочетании с его толщиной влияет на величину естественной статической ёмкости слоев питания, а также существенно влияет на волновое сопротивление проводников на плате.

Зависимость от частоты

Следует отметить, что диэлектрическая проницаемость в значительной степени зависит от частоты электромагнитного поля. Это следует всегда учитывать, поскольку таблицы справочников обычно содержат данные для статического поля или малых частот вплоть до нескольких единиц кГц без указания данного факта. В то же время существуют и оптические методы получения относительной диэлектрической проницаемости по коэффициенту преломления при помощи эллипсометров и рефрактометров. Полученное оптическим методом (частота 10 14 Гц) значение будет значительно отличаться от данных в таблицах.

Рассмотрим, например, случай воды. В случае статического поля (частота равна нулю), относительная диэлектрическая проницаемость при нормальных условиях приблизительно равна 80. Это имеет место вплоть до инфракрасных частот. Начиная примерно с 2 ГГц ε r начинает падать. В оптическом диапазоне ε r составляет приблизительно 1,8. Это вполне соответствует факту, что в оптическом диапазоне показатель преломления воды равен 1,33. В узком диапазоне частот, называемом оптическим, диэлектрическое поглощение падает до нуля, что собственно и обеспечивает человеку механизм зрения в земной атмосфере, насыщенной водяным паром. С дальнейшим ростом частоты свойства среды вновь меняются.

Значения диэлектрической проницаемости для некоторых веществ

Вещество Химическая формула Условия измерения Характерное значение ε r
Алюминий Al 1 кГц -1300 + 1,3Шаблон:Ei
Серебро Ag 1 кГц -85 + 8Шаблон:Ei
Вакуум - - 1
Воздух - Нормальные условия , 0,9 МГц 1,00058986 ± 0,00000050
Углекислый газ CO 2 Нормальные условия 1,0009
Тефлон - - 2,1
Нейлон - - 3,2
Полиэтилен [-СН 2 -СН 2 -] n - 2,25
Полистирол [-СН 2 -С(С 6 Н 5)Н-] n - 2,4-2,7
Каучук - - 2,4
Битум - - 2,5-3,0
Сероуглерод CS 2 - 2,6
Парафин С 18 Н 38 − С 35 Н 72 - 2,0-3,0
Бумага - - 2,0-3,5
Электроактивные полимеры 2-12
Эбонит (C 6 H 9 S) 2 2,5-3,0
Плексиглас (оргстекло) - - 3,5
Кварц SiO 2 - 3,5-4,5
Диоксид кремния SiO 2 3,9
Бакелит - - 4,5
Бетон 4,5
Фарфор 4,5-4,7
Стекло 4,7 (3,7-10)
Стеклотекстолит FR-4 - - 4,5-5,2
Гетинакс - - 5-6
Слюда - - 7,5
Резина 7
Поликор 98 % Al 2 O 3 - 9,7
Алмаз 5,5-10
Поваренная соль NaCl 3-15
Графит C 10-15
Керамика 10-20
Кремний Si 11.68
Бор B 2.01
Аммиак NH 3 20 °C 17
0 °C 20
−40 °C 22
−80 °C 26
Спирт этиловый C 2 H 5 OH или CH 3 -CH 2 -OH 27
Метанол CH 3 OH 30
Этиленгликоль HO-CH 2 -CH 2 -OH 37
Фурфурол C 5 H 4 O 2 42

Уровень поляризуемости вещества характеризуется особенной величиной, которую называют диэлектрическая проницаемость. Рассмотрим, что это за величина.

Допустим, что напряженность однородного поля между двух заряженных пластин в пустоте равна Е₀. Теперь заполним промежуток между ними любым диэлектриком. которые появятся на границе между диэлектриком и проводником благодаря его поляризации, частично нейтрализуют воздействие зарядов на пластинах. Напряженность Е данного поля станет меньше напряженности Е₀.

Опыт обнаруживает, что при последовательном заполнении промежутка между пластинами равными диэлектриками, величины напряженности поля окажутся разными. Поэтому зная величину отношения напряженности электрополя между пластинами в отсутствие диэлектрика Е₀ и при наличии диэлектрика Е, можно определять его поляризуемость, т.е. его диэлектрическую проницаемость. Эту величину принято обозначать греческой буквой ԑ (эпсилон). Следовательно, можно написать:

Диэлектрическая проницаемость демонстрирует, во сколько раз данных зарядов в диэлектрике (однородном) будет меньше, чем в вакууме.

Уменьшение силы взаимодействия между зарядами вызвано процессами поляризации среды. В электрическом поле электроны в атомах и молекулах уменьшаются по отношению к ионам, и возникает Т.е. те молекулы, у которых есть свой дипольный момент (в частности молекулы воды), ориентируются в электрическом поле. Эти моменты создают собственное электрическое поле, противодействующее тому полю, которое вызвало их появление. В результате суммарное электрическое поле уменьшается. В небольших полях это явление описывают с помощью понятия диэлектрической проницаемости.

Ниже приведена диэлектрическая проницаемость в вакууме различных веществ:

Воздух……………………………....1,0006

Парафин…………………………....2

Плексиглас (оргстекло)……3-4

Эбонит……………………………..…4

Фарфор……………………………....7

Стекло…………………………..…….4-7

Слюда……………………………..….4-5

Шелк натуральный............4-5

Шифер..............................6-7

Янтарь…………………………...……12,8

Вода………………………………...….81

Данные значения диэлектрической проницаемости веществ относятся к окружающим температурам в пределах 18—20 °С. Так, диэлектрическая проницаемость твердых тел незначительно изменяется с температурой, исключением являются сегнетоэлектрики.

Напротив, у газов она уменьшается из-за повышения температуры и возрастает в связи с увеличением давления. В практике принимается за единицу.

Примеси в небольших количествах мало влияют на уровень диэлектрической проницаемости жидкостей.

Если два произвольных точечных заряда поместить в диэлектрик, то напряженность поля, создаваемого каждым из этих зарядов в точке нахождения другого заряда, уменьшается в ԑ раз. Из этого следует, что сила, с которой эти заряды взаимодействуют один с другим, также в ԑ раз меньше. Поэтому для зарядов, помещенных в диэлектрик, выражается формулой:

F = (q₁q₂)/(4πԑₐr²),

где F — является силой взаимодействия, q₁ и q₂, — величины зарядов, ԑ — является абсолютной диэлектрической проницаемостью среды, г — дистанция между точечными зарядами.

Значение ԑ численно можно показать в относительных единицах (по отношению к значению абсолютной диэлектрической проницаемости вакуума ԑ₀). Величина ԑ = ԑₐ/ԑ₀ называют относительной диэлектрической проницаемостью. Она раскрывает, во сколько раз взаимодействие между зарядами в бесконечной однородной среде слабее, чем в вакууме; ԑ = ԑₐ/ԑ₀ часто называют комплексная диэлектрическая проницаемость. Численное значение величины ԑ₀, а также ее размерность зависимы от того, какая система единиц выбрана; а значение ԑ - не зависит. Так, в системе СГСЭ ԑ₀ = 1 (эта четвертая основная единица); в системе СИ диэлектрическая проницаемость вакуума выражается:

ԑ₀ = 1/(4π˖9˖10⁹) фарада/метр = 8,85˖10⁻¹² ф/м (в этой системе ԑ₀ является производной величиной).

Емкость конденсатора зависит, как показывает опыт, не только от размера, формы и взаимного расположения составляющих его проводников, но также и от свойств диэлектрика, заполняющего пространство между этими проводниками. Влияние диэлектрика можно установить при помощи следующего опыта. Зарядим плоский конденсатор и заметим показания электрометра, измеряющего напряжение на конденсаторе. Вдвинем затем в конденсатор незаряженную эбонитовую пластинку (рис. 63). Мы увидим, что разность потенциалов между обкладками заметно уменьшится. Если удалить эбонит, то показания электрометра делаются прежними. Это показывает, что при замене воздуха эбонитом емкость конденсатора увеличивается. Взяв вместо эбонита какой-нибудь иной диэлектрик, мы получим сходный результат, но только изменение емкости конденсатора будет иным. Если – емкость конденсатора, между обкладками которого находится вакуум, а – емкость того же конденсатора, когда все пространство между обкладками заполнено, без воздушных зазоров, каким-либо диэлектриком, то емкость окажется в раз больше емкости , где зависит лишь от природы диэлектрика. Таким образом, можно написать

Рис. 63. Емкость конденсатора увеличивается при вдвигании эбонитовой пластинки между его обкладками. Листки электрометра спадают, хотя заряд остается прежним

Величина называется относительной диэлектрической проницаемостью или просто диэлектрической проницаемостью среды, которой заполнено пространство между обкладками конденсатора. В табл. 1 приведены значения диэлектрической проницаемости некоторых веществ.

Таблица 1. Диэлектрическая проницаемость некоторых веществ

Вещество

Вода (чистая)

Керамика (радиотехническая)

Сказанное справедливо не только для плоского конденсатора, но и для конденсатора любой формы: заменяя воздух каким-либо диэлектриком, мы увеличиваем емкость конденсатора в раз.

Строго говоря, емкость конденсатора увеличивается в раз только в том случае, если все линии поля, идущие от одной обкладки к другой, проходят в данном диэлектрике. Это будет, например, у конденсатора, который целиком погружен в какой-либо жидкий диэлектрик, налитый в большой сосуд. Однако если расстояние между обкладками мало по сравнению с их размерами, то можно считать, что достаточно заполнить только пространство между обкладками, так как именно здесь практически сосредоточено электрическое поле конденсатора. Так, для плоского конденсатора достаточно заполнить диэлектриком лишь пространство между пластинами.

Помещая между обкладками вещество с большой диэлектрической проницаемостью, можно сильно увеличить емкость конденсатора. Этим пользуются на практике, и обычно в качестве диэлектрика для конденсатора выбирают не воздух, а стекло, парафин, слюду и другие вещества. На рис. 64 показан технический конденсатор, у которого диэлектриком служит пропитанная парафином бумажная лента. Его обкладками являются станиолевые листы, прижатые, с обеих сторон к парафинированной бумаге. Емкость таких конденсаторов нередко достигает нескольких микрофарад. Так, например, радиолюбительский конденсатор размером со спичечную коробку имеет емкость 2 мкФ.

Рис. 64. Технический плоский конденсатор: а) в собранном виде; б) в частично разобранном виде: 1 и 1" – станиолевые ленты, между которыми проложены ленты парафинированной тонкой бумаги 2. Все ленты вместе складываются «гармошкой» и вкладываются в металлическую коробку. К концам лент 1 и 1" припаиваются контакты 3 и 3" для включения конденсатора в схему

Понятно, что для изготовления конденсатора пригодны только диэлектрики с очень хорошими изолирующими свойствами. В противном случае заряды будут утекать через диэлектрик. Поэтому вода, несмотря на ее большую диэлектрическую проницаемость, совсем не годится для изготовления конденсаторов, ибо только исключительно тщательно очищенная вода является достаточно хорошим диэлектриком.

Если пространство между обкладками плоского конденсатора заполнено средой с диэлектрической проницаемостью , то формула (34.1) для плоского конденсатора принимает вид

То обстоятельство, что емкость конденсатора зависит от окружающей среды, указывает, что электрическое поле внутри диэлектриков изменяется. Мы видели, что при заполнении конденсатора диэлектриком с диэлектрической проницаемостью емкость увеличивается в раз. Это значит, что при тех же самых зарядах на обкладках разность потенциалов между ними уменьшается в раз. Но разность потенциалов и напряженность поля связаны между собой соотношением (30.1). Поэтому уменьшение разности потенциалов означает, что напряженность поля в конденсаторе при его заполнении диэлектриком делается меньше в раз. В этом и состоит причина увеличения емкости конденсатора. раз меньше, чем в вакууме. Отсюда заключаем, что закон Кулона (10.1) для точечных зарядов, помещенных в диэлектрике, имеет вид

Лекция №19

  1. Природа электропроводности газообразных, жидких и твердых диэлектриков

Диэлектрическая проницаемость

Относительная диэлектрическая проницаемость, или диэлектрическая проницаемость ε - один из важнейших макроскопических электрических параметров диэлектрика. Диэлектрическая проницаемость ε количественно характеризует способность диэлектрика поляризоваться в электрическом поле, а также оценивает степень его полярности; ε является константой диэлектрического материала при данной температуре и частоте электрического напряжения и показывает, во сколько раз заряд конденсатора с диэлектриком больше заряда конденсатора тех же размеров с вакуумом.

Диэлектрическая проницаемость определяет величину электрической емкости изделия (конденсатора, изоляции кабеля и т.п.). Для плоского конденсатора электрическая емкость С, Ф, выражается формулой (1)

где S- площадь измерительного электрода, м 2 ; h - толщина диэлектрика, м. Из формулы (1) видно, что чем больше величина ε используемого диэлектрика, тем больше электрическая емкость конденсатора при тех же габаритах. В свою очередь, электрическая емкость С является коэффициентом пропорциональности между поверхностным зарядом QК, накопленным конденсатором, и приложенным к нему электрическим на-

пряжением U (2):

Из формулы (2) следует, что электрический заряд QК, накопленный конденсатором, пропорционален величине ε диэлектрика. Зная игеометрические размеры конденсатора, можно определить ε диэлектрического материала для данного напряжения.

Рассмотрим механизм образования заряда на электродах конденсатора с диэлектриком и из каких составляющих складывается этот заряд. Для этого возьмем два плоских конденсатора одинаковых геометрических размеров: один - с вакуумом, другой - с межэлектродным пространством, заполненным диэлектриком, и подадим на них одинаковое электрическое напряжение U (рис. 1). На электродах первого конденсатора образуется заряд Q0 , на электродах второго - . В свою очередь, заряд является суммой зарядов Q0 и Q (3):

Заряд Q 0 образован внешним полем Е0 путем накопления на электродах конденсатора сторонних зарядов с поверхностной плотностью σ 0 . Q - это дополнительный заряд на электродах конденсатора, создаваемый источником электрического напряжения для компенсации связанных зарядов, образовавшихся на поверхности диэлектрика.

В равномерно поляризованном диэлектрике заряд Q соответствует величине поверхностной плотности связанных зарядов σ. Заряд σ образует поле Е сз, направленное противоположно полю Е О.

Диэлектрическую проницаемость рассматриваемого диэлектрика можно представить как отношение заряда конденсатора, заполненного диэлектриком, к заряду Q0 такого же конденсатора с вакуумом (3):

Из формулы (3) следует, что диэлектрическая проницаемость ε - величина безразмерная, и у любого диэлектрика она больше единицы; в случае вакуума ε = 1. Из рассмотренного примера также

видно, что плотность заряда на электродах конденсатора с диэлектриком в ε раз больше плотности заряда на электродах конденсатора с вакуумом, а напряженности при одинаковых напряжениях для обо

их конденсаторов одинаковы и зависят только от величины напряжения U и расстояния между электродами (Е = U /h).

Кроме относительной диэлектрической проницаемости ε различают абсолютную диэлектрическую проницаемость ε а , Ф/м, (4)

которая не имеет физического смысла и используется в электротехнике.

Относительное изменение диэлектрической проницаемости εr при повышении температуры на 1 К называется температурным коэффициентом диэлектрической проницаемости.

ТКε = 1/ εr d εr/dT К-1 Для воздуха при 20°С ТК εr = -2.10-6К-

Электрическое старение в сегнетоэлектриках выражается в уменьшении εr со временем. Причиной является перегруппировка доменов.

Особенно резкое изменение диэлектрической проницаемости со временем наблюдается при температурах, близких к точке Кюри. Нагревание сегнетоэлектриков до температуры более точки Кюри и последующее охлаждение возвращает εr к прежнему значению. Такое же восстановление диэлектрической проницаемости можно осуществить, воздействуя на сегнетоэлектрик электрическим полем повышенной напряженности.

Для сложных диэлектриков – механической смеси двух компонентов с разным εr в первом приближении: εrх = θ1 · εr1х ·θ· εr2х,где θ – обьемная концентрация компонентов смеси, εr - относительная диэлектрическая проницаемость компонента смеси.

Поляризация диэлектрика может быть вызвана: механическими нагрузками (пьезополяризация в пьезоэлектриках); нагревом (пирополяризация в пироэлектриках); светом (фотополяризация).

Поляризованное состояние диэлектрика в электрическом поле Е характеризуется электрическим моментом единицы объема, поляризованностью Р, Кл/м2, которая связана с его относительной диэлектрической проницаемостью eг: Р = e0 (eг - 1)Е, где e0 = 8,85∙10-12 Ф/м. Произведение e0∙eг =e, Ф/м, называют абсолютной диэлектрической проницаемостью. В газообразных диэлектриках eг мало отличается от 1,0, в неполярных жидких и твердых достигает 1,5 - 3,0, в полярных имеет большие значения; в ионных кристаллах eг - 5-МО, а в имеющих перовскитовую кристаллическую решетку достигает 200; в сегнетоэлектриках eг - 103 и больше.

В неполярных диэлектриках с ростом температуры eг незначительно уменьшается, в полярных изменения связаны с преобладанием того или иного вида поляризации, в ионных кристаллах увеличивается, в некоторых сегнетоэлектриках при температуре Кюри достигает 104 и больше. Температурные изменения eг характеризуют температурным коэффициентом. Для полярных диэлектриков характерным является уменьшение eг в области частот, где время т на поляризацию соизмеримо с Т/2.


Похожая информация.


ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ (диэлектрическая постоянная ) - физическая величина, характеризующая способность вещества уменьшать силы электрического взаимодействия в этом веществе по сравнению с вакуумом. Т. о., Д. п. показывает, во сколько раз силы электрического взаимодействия в веществе меньше, чем в вакууме.

Д. п.- характеристика, зависящая от строения вещества-диэлектрика. Электроны, ионы, атомы, молекулы или их отдельные части и более крупные участки какого-либо вещества в электрическом поле поляризуются (см. Поляризация), что приводит к частичной нейтрализации внешнего электрического поля. Если частота электрического поля соизмерима с временем поляризации вещества, то в определенном диапазоне частот имеет место дисперсия Д. п., т. е. зависимость ее величины от частоты (см. Дисперсия). Д. п. вещества зависит как от электрических свойств атомов и молекул, так и от их взаимного расположения, т. е. строения вещества. Поэтому определение Д. п. или ее изменения в зависимости от окружающих условий используют при исследовании структуры вещества, и в частности различных тканей организма (см. Электропроводность биологических систем).

Различные вещества (диэлектрики) в зависимости от их строения и агрегатного состояния имеют различную величину Д. п. (табл.).

Таблица. Значение диэлектрической проницаемости некоторых веществ

Особое значение для мед.-биол, исследований имеет изучение Д. и. в полярных жидкостях. Типичным их представителем является вода, состоящая из диполей, которые в электрическом поле ориентируются благодаря взаимодействию между зарядами диполя и полем, что приводит к возникновению дипольной или ориентационной поляризации. Высокая величина Д. п. воды (80 при t° 20°) определяет высокую степень диссоциации в ней различных хим. веществ и хорошую растворимость солей, к-т, оснований и других соединений (см. Диссоциация , Электролиты). С увеличением концентрации электролита в воде величина ее Д. п. уменьшается (напр., для одновалентных электролитов Д. п. воды уменьшается на единицу при увеличении концентрации соли на 0,1 М).

Большинство биол, объектов относится к гетерогенным диэлектрикам. При взаимодействии ионов биол, объекта с электрическим полем существенное значение имеет поляризация границ раздела (см. Мембраны биологические). При этом величина поляризации тем больше, чем меньше частота электрического поля. Т. к. поляризация границ раздела биол, объекта зависит от их проницаемости (см.) для ионов, то очевидно, что эффективная Д. п. в большей степени определяется состоянием мембран.

Т. к. поляризация такого сложного гетерогенного объекта, как биологический, имеет различную природу (концентрационная, макроструктурная, ориентационная, ионная, электронная и др.), то становится понятным тот факт, что с возрастанием частоты изменение Д. п. (дисперсия) резко выражено. Условно выделяют три области дисперсии Д. п.: альфа-дисперсия (на частотах до 1 кгц), бета-дисперсия (частота от нескольких кгц до десятков мгц) и гамма-дисперсия (частоты выше 10 9 гц); в биол, объектах четкой границы между областями дисперсии обычно нет.

При ухудшении функц, состояния биол, объекта дисперсия Д. п. на низких частотах уменьшается вплоть до полного исчезновения (при отмирании тканей). На высоких частотах величина Д. п. существенно не изменяется.

Д. п. измеряют в широком диапазоне частот и в зависимости от диапазона частот существенно изменяются и методы измерения. При частотах электрического тока менее 1 гц измерение производят с помощью метода заряда или разряда конденсатора, заполненного исследуемым веществом. Зная зависимость зарядного или разрядного тока от времени, можно определить не только величину электрической емкости конденсатора, но и потери в нем. На частотах от 1 до 3 10 8 гц для измерения Д. и. применяют специальные резонансные и мостовые методы, которые позволяют комплексно исследовать изменения Д. п. различных веществ наиболее полно и разносторонне.

В мед.-биол, исследованиях чаще всего используют симметричные мосты переменного тока с непосредственным отсчетом измеряемых величин.

Библиография: Высокочастотный нагрев диэлектриков и полупроводников, под ред. А. В. Нетушила,М. -Л., 1959, библиогр.; С едунов Б. И. и Фран к-К а м е-н e ц к и й Д. А. Диэлектрическая проницаемость биологических объектов, Усп. физич. наук, т. 79, в. 4, с. 617, 1963, библиогр.; Электроника и кибернетика в биологии и медицине, пер. с англ., под ред. П. К. Анохина, с. 71, М., 1963, библиогр.; Э м e Ф. Диэлектрические измерения, пер. с нем., М., 1967, библиогр.

2024 med103.ru. Я самая красивая. Мода и стиль. Разные хитрости. Уход за лицом.