Потенциал действия и его свойства. Потенциал действия. Ионный механизм возникновения потенциала действия

Потенциалом действия (ПД) называют быстрое колебание мем­бранного потенциала, возникающее при возбуждении нервных, мышечных и некоторых других клеток. В его основе лежат изменения ионной прони­цаемости мембраны. Амплитуда ПД мало зависит от силы вызывающего его раздражителя, важно лишь, чтобы эта сила была не меньше некоторой критической величины, которая называется порогом раздражения. Воз­никнув в месте раздражения, ПД распространяется вдоль нервного или мышечного волокна, не изменяя своей амплитуды.

В естественных условиях ПД генерируются в нервных волокнах при раздражении рецепторов или возбуждении нервных клеток. Распростра­нение ПД по нервным волокнам обеспечивает передачу информации в нервной системе. Достигнув нервных окончаний, ПД вызывают секрецию химических веществ (медиаторов), обеспечивающих передачу сигнала на мышечные или нервные клетки. В мышечных клетках ПД инициируют цепь процессов, вызывающих сократительный акт. Ионы, проникающие в цитоплазму во время генерации ПД, оказывают регулирующее влияние на метаболизм клетки и, в частности, на процессы синтеза белков, состав­ляющих ионные каналы и ионные насосы.


Рис. 3. Потенциал действия скелетного мышечного волокна, зарегистрированный с помощью внутриклеточного микроэлектрода: а – фаза деполяризации, б – фаза реполяризации, в – фаза следовой деполяризации (отрицательный следовой потенциал). Момент нанесения раздражения показан стрелкой.

Установлено, что во время восходящей фазы (фазы деполяризации) происходит не просто исчезновение потенциала покоя (как это первоначально предполагали), а возникает разность потенциалов обратного знака: внутреннее содержимое клетки становится заряженным положительно по отношению к наружной среде, иными словами, происходит реверсия мембранного потенциала. Во время нисходящей фазы (фазы реполяризации) мембранный потенциал возвращается к своему исходному значению. Если рассмотреть пример записи ПД в скелетном мышечном волокне лягушки (см. рис. 3), то видно, что в момент достижения пика мембранный потенциал составляет +30 – +40 мВ. Длительность пика ПД у различных нервных и мышечных волокон варьирует от 0,5 до 3 мс, причем фаза реполяризации продолжительнее фазы деполяризации.

Изменения мембранного потенциала, следующие за пиком потенциала действия, называют следовыми потенциалами. Различают два вида следовых потенциалов – следовую деполяризацию и следовую гиперполяризацию.

Ионный механизм возникновения ПД. Как отмечалось, в состоянии покоя проницаемость мембраны для калия превышает ее проницаемость для натрия. Вследствие этого поток К + из цитоплазмы во внешний раствор превышает противоположно направленный поток Na + . Поэтому наружная сторона мембраны в покое имеет положительный потенциал по отношению к внутренней.

При действии на клетку раздражителя проницаемость мембраны для Na + резко повышается и становится примерно в 20 раз больше проницаемости для K + . Поэтому поток Na + из внешнего раствора в цитоплазму начинает превышать направленный наружу калиевый ток. Это приводит к изменению знака (реверсии) мембранного потенциала: внутренняя сторона мембраны в месте возбуждения становится заряженной положительно по отношению к ее наружной поверхности. Указанное изменение мембранного потенциала соответствует восходящей фазе ПД (фазе деполяризации).

Повышение проницаемости мембраны для Na + продолжается лишь очень короткое время. Вслед за этим проницаемость мембраны для Na + вновь понижается, а для K + возрастает. Процесс, ведущий к понижению ранее увеличенной натриевой проницаемости мембраны, назван натриевой инактивацией. В результате инактивации поток Na + внутрь цитоплазмы резко ослабляется. Увеличение же калиевой проницаемости вызывает усиление потока K + из цитоплазмы во внешний раствор. В итоге этих двух процессов и происходит реполяризация мембраны: внутреннее содержимое клетки вновь приобретает отрицательный заряд по отношению к наружной стороне мембраны. Этому изменению потенциала соответствует нисходящая фаза ПД (фаза реполяризации). Опыты на гигантских нервных волокнах кальмара позволили получить подтверждение правильности натриевой теории возникновения ПД.

ПД возникает при деполяризации поверхностной мембраны. Небольшие величины деполяризации приводят к открыванию части натриевых каналов и незначительному проникновению ионов Na внутрь клетки. Эти реакции являются подпороговыми и вызывают лишь местные изменения на мембране (локальный ответ). При увеличении силы раздражения, когда достигнут порог возбудимости, изменения мембранного потенциала достигают критического уровня деполяризации (КУД). Например, величина потенциала покоя равна -70 мВ, КУД = -50 мВ. Чтобы вызвать возбуждение, надо деполяризовать мембрану до -50 мВ, т.е. на -20 мВ снизить ее исходный потенциал покоя. Только при достижении КУД наблюдается резкое изменение мембранного потенциала, которое регистрируется в виде ПД. Таким образом, основное условие возникновения потенциала действия – это снижение мембранного потенциала до критического уровня депо­ляризации.

В основе рассмотренных изменений ионной проницаемости мембра­ны при генерации ПД лежат процессы открывания и закрывания специали­зированных ионных каналов в мембране, обладающих двумя важнейшими свойствами:

■ избирательностью (селективностью) по отношению к определен­ным ионам;

■ электровозбудимостью, т.е. способностью открываться и закры­ваться в ответ на изменения мембранного потенциала.

Так же как ионные насосы, ионные каналы образованы макромолекулами белков, пронизывающими липидный бислой мембраны.

Активный и пассивный ионный транспорт. В процессе восста­новления после ПД работа калий-натриевого насоса обеспечивает «откач­ку» излишних ионов натрия наружу и «накачивание» потерянных ионов калия внутрь, благодаря чему нарушенное при возбуждении неравенство концентраций Na + и K + по обе стороны мембраны восстанавливается. На работу этого механизма тратится около 70 % необходимой клетке энергии.

Таким образом, в живой клетке существует две системы движения ионов через мембрану.

Один из них осуществляется по градиенту концентрации ионов и не требует затраты энергии (пассивный ионный транспорт) . Он ответствен за возникновение потенциала покоя и ПД и ведет в конечном итоге к вы­равниванию концентрации ионов по обе стороны клеточной мембраны.

Второй осуществляется против концентрационного градиента. Он состоит в «выкачивании» ионов натрия из цитоплазмы и «нагнетании» ио­нов калия внутрь клетки. Этот тип ионного транспорта возможен лишь при условии затраты энергии обмена веществ. Его называют активным ион­ным транспортом. Он ответствен за поддержание постоянства разности концентраций ионов между цитоплазмой и омывающей клетку жидкостью. Активный транспорт - результат работы натриевого насоса, благодаря ко­торому восстанавливается исходная разность ионных концентраций, на­рушающаяся при каждой вспышке возбуждения.

Проведение возбуждения

Нервный импульс (потенциал действия) обладает способностью рас­пространяться вдоль по нервным и мышечным волокнам.

В нервном волокне потенциал действия является очень сильным раздражителем для соседних участков волокна. Амплитуда потенциала действия обычно в 5 – 6 раз превышает пороговую величину деполяризации. Это обеспечивает высокую скорость и надежность проведения.

Между зоной возбуждения (имеющей на поверхности волокна отрицательный заряд и на внутренней стороне мембраны – положительный) и соседним невозбужденным участком мембраны нервного волокна (с обратным соотношением зарядов) возникают электрические токи – так называемые местные токи. В результате развивается деполяризация соседнего участка, увеличение его ионной проницаемости и появление потенциала действия. В исходной же зоне возбуждения восстанавливается потенциал покоя. Затем возбуждением охватывается следующий участок мембраны и т.д. Таким образом, с помощью местных токов происходит распространение возбуждения на соседние участки нервного волокна, т.е. проведение нервного импульса. По мере проведения амплитуда потенциала действия не уменьшается, т.е. возбуждение не затухает даже при большой длине нерва.

В процессе эволюции с переходом от безмякотных нервных волокон к мякотным (покрытым миелиновой оболочкой) произошло существенное повышение скорости проведения нервного импульса. Для безмякотных волокон характерно непрерывное проведение возбуждения, которое охватывает последовательно каждый соседний участок нерва. Мякотные же нервы почти полностью покрыты изолирующей миелиновой оболочкой. Ионные токи в них могут проходить только в оголенных участках мембраны -перехватах Ранвье, лишенных этой оболочки. При проведении нервного импульса потенциал действия перескакивает от одного перехвата к другому и может охватывать даже несколько перехватов. Такое проведение поучило название сальтоторного (лат. сальто – прыжок). При этом повышается не только скорость, но и экономичность проведения. Возбуждение захватывает не всю поверхность мембраны волокна, а лишь небольшую ее часть. Следовательно, меньше энергии тратится на активный транспорт ионов через мембрану при возбуждении и в процессе восстановления.

Скорость проведения в разных волокнах различна. Более толстые нервные волокна проводят возбуждение с большей скоростью: у них расстояния между перехватами Ранвье больше и длиннее скачки. Наибольшую скорость проведения имеют двигательные и проприоцептивные афферентные нервные волокна - до 100 м/с. В тонких симпатических нерв ных волокнах (особенно в немиелинизированных волокнах) скорость проведения мала - порядка 0,5 - 15 м/с.

Во время развития потенциала действия мембрана полностью теряет возбудимость. Это состояние называют полной невозбудимостью, или абсолютной рефрактерностью. За ним следует относительная рефрактерность, когда потенциал действия может возникать лишь при очень сильном раздражении. Постепенно возбудимость восстанавливается до исходного уровня.

Законы проведения возбуждения в нервах:

1. Проведение импульсов возможно лишь при условии анатомической и физиологической целостности волокна.

2. Двустороннее проведение: при раздражении нервного волокна возбуждение распространяется по нему и в центробежном, и в центростремительном направлениях.

3. Изолированное проведение: в периферическом нерве импульсы распространяются по каждому волокну изолированно, т.е. не переходя с одного волокна на другое и оказывая действие только на те клетки, с которыми контактируют окончания данного нервного волокна.

13. Дайте определение гомеостаза.


14. Назовите основные пути регуляции различных функций у высокоорганизо­ванных животных и человека.

15. Кем и когда было открыто «животное электричество»?

16. Какие ткани относятся к возбудимым? Почему они так называются?

17. Назовите основные функциональные характеристики возбудимых тканей.

18. Что называют порогом возбудимости?

19. От каких факторов зависит величина порога?

20. Что такое лабильность? Кем было выдвинуто понятие лабильности, какие свойства возбудимых тканей оно характеризует?

21. Что называют мембранным потенциалом (потенциалом покоя)?

22. Чем обусловлено наличие электрических потенциалов в живых клетках?

23. В каких случаях говорят о деполяризации (или гиперполяризации) клеточ­ной мембраны?

24. Какую роль в формировании потенциала покоя играет калий-натриевый на­сос мембраны?

25. Что называют потенциалом действия? Какова его роль в нервной системе?

26. Что лежит в основе возникновения потенциала действия?

27. Охарактеризуйте фазы потенциала действия.

28. Что называют реверсией мембранного потенциала?

29. Опишите ионный механизм возникновения потенциала действия.

30. Что понимают под натриевой инактивацией?

31. Что такое критический уровень деполяризации?

32. Какими свойствами обладают ионные каналы клеточной мембраны?

33. Охарактеризуйте два типа ионного транспорта в клетке:

■ пассивный;

■ активный.


Модуль 1 ОБЩАЯ ФИЗИОЛОГИЯ ЦНС

  • Лекция 3. Механизмы проведения возбуждения
  • 3.2. Нервно-мышечный синапс: строение, механизм проведения возбуждения, особенности проведения возбуждения в синапсе по сравнению с нервным волокном.
  • Лекция 4. Физиология мышечного сокращения
  • Лекция 5. Общая физиология центральной нервной системы
  • 5.3. Классификация синапсов цнс, медиаторы синапсов цнс и их функциональное значение. Свойства синапсов цнс.
  • Лекция 6. Структура цнс. Свойства нервных центров.
  • 6. 1. Понятие о нервном центре. Свойства нервных центров.
  • 6.2. Методы исследования функций цнс.
  • Лекция 7. Механизмы и способы торможения в цнс. Координационная деятельность цнс.
  • 7.1. Процессы торможения в цнс: механизм постсинаптического и пресинаптического торможений, посттетаническое и пессимальное торможение. Значение торможения.
  • 7.2. Координационная деятельность цнс: понятие о координации, принципы координационной деятельности цнс.
  • Лекция 8. Физиология спинного мозга и мозгового ствола.
  • 8.1. Роль спинного мозга в регуляции функций организма: вегетативные и соматические центры и их значение.
  • 8.2. Продолговатый мозг и мост: центры и соответствующие им рефлексы, их отличия от рефлексов спинного мозга.
  • 8.3 Средний мозг: основные структуры и их функции, статические и статокинетические рефлексы.
  • Лекция 9. Физиология ретикулярной формации, промежуточного и заднего мозга.
  • 9.2. Мозжечок: афферентные и эфферентные связи, роль мозжечка в регуляции тонуса мышц в обеспечении двигательной активности. Симптомы поражения мозжечка.
  • 9.3. Промежуточный мозг: структуры и их функции. Роль таламуса и гипоталамуса в регуляции гомеостаза организма и осуществлении сенсорной функции.
  • Лекция 10. Физиология переднего мозга. Физиология вегетативной нервной системы.
  • 10.1. Мозговые системы произвольных и непроизвольных движений (Пирамидная и экстрапирамидная системы): главные структуры, функции.
  • 10.2. Лимбическая система: структуры и функции.
  • 10.3. Функции новой коры, функциональное значение соматосенсорных и моторных зон коры больших полушарий.
  • Лекция 11. Физиология эндокринной системы и нейроэндокринные отношения.
  • 11. 1. Эндокринная система и гормоны. Функциональное значение гормонов.
  • 11.2. Общие принципы регуляции функций эндокринных желез. Гипоталамо-гипофизарная система. Функции аденогипофиза. Функции нейрогипофиза
  • 11.4. Щитовидная железа: регуляция образования и транспорт иодированных гормонов, роль иодированных гормонов и кальцитонина. Функции паращитовидных желез.
  • Лекция 12. Физиология системы крови. Физико-химические свойства крови.
  • 12. 1. Кровь как составная часть внутренней среды организма. Понятие о системе крови (г.Ф. Ланг). Функции крови. Количество крови в организме и методы его определения.
  • 12. 2. Состав крови. Гематокрит. Состав плазмы. Основные физико-химические константы крови.
  • Лекция 13. Физиология гемостаза.
  • 13.1. Свертывание крови: понятие, ферментативная теория (Шмидт, Моравиц), факторы свертывания, роль тромбоцитов.
  • Лекция 14. Антигенные свойства крови. Основы трансфузиологии
  • 14.2. Группы крови систем Rh: открытие, антигенный состав, значение для клиники. Краткая характеристика других систем антигенов (m, n, s, p и др.)
  • Лекция 15. Клеточные элементы крови
  • 15.2. Гемоглобин: свойства, соединения гемоглобина, количество Нв, методы его определения. Цветовой показатель. Метаболизм гемоглобина.
  • 15.3. Лейкоциты: количество, методы подсчета, лейкоцитарная формула, функции различных видов лейкоцитов. Физиологический лейкоцитоз: понятие, виды. Нервная и гуморальная регуляция лейкопоэза.
  • 15. 4. Роль нервной системы и гуморальных факторов в Регуляции клеточного состава крови.
  • Лекция 16. Физиология сердечной деятельности
  • Лекция 17. Внешние проявления работы сердца, способы их регистрации. Функциональные показатели деятельности ердца.
  • Лекция 18. Регуляция работы сердца.
  • 18.2. Интракардиальная регуляция деятельности сердца: миогенная регуляция, внутрисердечная нервная система.
  • 18.3. Рефлекторные механизмы регуляции сердечной деятельности. Корковые влияния. Гуморальные механизмы регуляции работы сердца.
  • Лекция 19. Законы движения крови по сосудам. Основные гемодинамические показатели
  • Лекция 20. Особенности движения крови в разных отделах сосудистого русла.
  • 20.3. Давление крови в артериях: виды, показатели, факторы, их определяющие, кривая артериального давления.
  • 21.1. Нервная регуляция сосудистого тонуса.
  • 21.2. Базальный тонус и его компоненты, доля участия его в общем тонусе сосудов. Гуморальная регуляция сосудистого тонуса. Ренин-антиотезиновая система. Локальные регуляторные механизмы
  • 21. 4. Особенности регионального кровообращения: коронарного, легочного, мозгового, печеночного, почечного, кожного.
  • 22.1. Дыхание: этапы дыхательного процесса. Понятие о внешнем дыхании. Функциональное значение легкого, воздухоносных путей и грудной клетки в процессе дыхания. Негазообменные функции легких.
  • 22. 2. Механизм вдоха и выдоха Отрицательное давление в плевральной щели. Понятие об отрицательном давлении, его величина, происхождение, значение.
  • 22. 3. Вентиляция легких: легочные объемы и емкости
  • Лекция 23. Механизмы газообмена
  • 23. 2. Транспорт о2и со2кровью. Газообмен между кровью и тканями.
  • Лекция 24. Регуляция дыхания
  • 24. 1. Структурно-функциональная характеристика дыхательного центра. Роль гуморальных факторов в регуляциИ интенсивности дыхания. Рефлекторная саморегуляция вдоха и выдоха.
  • 24. 2 Особенности дыхания и его регуляция при мышечной работе, при пониженном и повышенном атмосферном давлении. Гипоксия и ее виды. Искусственное дыхание. Гипербарическая оксигенация.
  • 24.3. Характеристика функциональной системы, поддерживающей постоянство газового состава крови и ее схема.
  • Лекция 25. Общая характеристика пищеварительной системы. Пищеварение в полости рта.
  • Лекция 26. Пищеварение в желудке и 12-п. Кишке.
  • 26.3. Печень: ее роль в пищеварении (состав желчи, ее значение, регуляция желчеобразования и желчевыделения), не пищеварительные функции печени.
  • Лекция 27. Пищеварение в тонкой и толстой кишке. Всасывание. Голод и насыщение.
  • 27. 1. Пищеварение в тонкой кишке: количество, состав пищеварительного сока тонкой кишки, регуляция ее секреции, полостное и мембранное пищеварение. Виды сокращений тонкой кишки и их регуляция.
  • 27.3. Всасывание в желудочно-кишечном тракте: интенсивность всасывания в различных отделах, механизмы всасывания и опыты, их доказывающие; регуляция всасывания.
  • 27.4. Физиологические основы голода и насыщения. Периодическая деятельность желудочно-кишечного тракта. Механизмы активного выбора пищи и биологическое значение этого факта.
  • Лекция 28. Метаболические основы физиологических функций.
  • 28. 1. Значение Обмена веществ. Обмен белков, жиров и углеводов. Витамины и их роль в организме.
  • 28. 2. Особенности и регуляция водно-солевого обмена.
  • 28. 4. Принципы исследования прихода и расхода энергии организмом.
  • 28.5. Питание: физиологические нормы питания, основные требования к составлению пищевого рациона и режиму приема пищи,
  • Лекция 29. Терморегуляция
  • 29. 1. Терморегуляция и ее виды, физические и физиологические механизмы теплопродукции и теплоотдачи.
  • 29. 2. Механизмы Терморегуляции. Характеристика функциональной системы, поддерживающей постоянство температуры внутренней среды организма и ее схема. Понятие о гипотермии и гипертермии.
  • Лекция 31. Гомеостатические функции почек.
  • Лекция 32. Сенсорные системы. Физиология анализаторов
  • 32. 1. Рецептор: понятие, функция, классификация рецепторов, свойства и их особенности, механизм возбуждения рецепторов.
  • 32.2. Анализаторы (и.П. Павлов): понятие, классификация анализаторов, три отдела анализаторов и их значение, принципы построения корковых отделов анализаторов.
  • 32. 3. Кодирование информации в анализаторах.
  • Лекция 33. Физиологические особенности отдельных анализаторных систем.
  • 33. 1. Зрительный анализатор
  • 33. 2. Слуховой анализатор. Механизм восприятия звука.
  • 33. 3. Вестибулярный анализатор.
  • 33.4. Кожно-кинестетический анализатор.
  • 33.5. Обонятельный и вкусовой анализаторы.
  • 33. 6. Внутренний (висцеральный) анализатор.
  • Лекция 34. Физиология высшей нервной деятельности.
  • 34. 1. Понятие о высшей нервной деятельности. Классификация условных рефлексов и их характеристика. Методы изучения внд.
  • 34. 2. Механизм образования условных рефлексов. “Замыкание” временной связи (и.П. Павлов, э.А. Асратян, п.К. Анохин).
  • 34. 4. Аналитико-синтетическая деятельность коры больших полушарий.
  • 34.5. Индивидуальные особенности высшей нервной деятельности. Типы внд.
  • Лекция 35. Особености внд человека. Физиологические механизмы сна.
  • 35.1. Особенности внд человека. Понятие о первой и второй сигнальной системах человека.
  • 35. 2. Физиологические МеХанизмы сна.
  • Лекция 36. Физиологические механизмы памяти.
  • 36.1. Физиологические механизмы усвоения и сохранения информации. Виды и механизмы памяти.
  • Лекция 37. Эмоции и мотивации. Физиологические механизмы целенаправленного поведения
  • 37.1. Эмоции: причины возникновения, значение. Информационная теория эмоций п.С. Симонова и теория эмоциональных состояний г.И. Косицкого.
  • 37.2. Функциональная система целенаправленного поведения (п.К. Анохин), ее центральные механизмы. Мотивации и их виды.
  • Лекция 38. Защитные функции организма. Ноцицептивная система.
  • 38.1. Ноцицепция: биологическое значение боли, ноцицептивная и антиноцицептивная системы.
  • Лекция 39. Физиологические механизмы трудовой деятельности и приспособления организма к изменившимся условиям.
  • 39.1. Физиологические основы трудовой деятельности. Особенности физического и умственного труда. Особенности труда в условиях современного производства, утомление и активный отдых.
  • 39. 2. Aдаптация организма к физическим, биологическим и социальным факторам. Виды адаптации. Особенности адаптации человека к климатическим факторам обитания.
  • 39.3. Биологические ритмы и их значение в деятельности человека и его адаптации к экстремальным условиям.
  • 39. 4. Стресс. Механизм развития общего адаптационного синдрома.
  • Лекция 40. Физиология репродукции. Плодо-материнские отношения и функциональная система мать-плод (фсмп).
  • 2.2. Потенциал действия: фазы потенциала действия, механизм возникновения. Восстановительный период. Явление аккомодации возбудимой ткани.

    Потенциал действия . Если участок нервного или мышечного волокна подвергнуть действию достаточно сильного раздражителя (например, толчка электрического тока), в этом участке возникает возбуждение, одним из наиболее важных проявлений которого служит быстрое колебание МП, называемое потенциалом действия (ПД)

    Причиной возникновения ПД является изменение ионной проницаемости мембраны. В состоянии покоя, как уже говорилось, проницаемость мембраны для К + превышает натриевую проницаемость. Вследствие этого поток положительно заряженных ионов из протоплазмы наружу превышает противоположный поток Na + . Поэтому мембрана в покое снаружи заряжена положительно.

    При действии на клетку раздражителя проницаемость мембраны для ионов Na+ резко повышается, и в конечном итоге становится примерно в 20 раз больше проницаемости для К + . Поэтому поток ионов Na + в клетку начинает значительно превышать направленный наружу поток К + . Ток Na + достигает величины +150 мв. Одновременно несколько уменьшается выход К + из клетки. Все это приводит к извращению (реверсии) МП, и наружная поверхность мембраны становится заряженной электро отрицательно по отношению к внутренней поверхности. Указанный сдвиг и регистрируется в виде восходящей ветви пика ПД (фаза деполяризации).

    При внутриклеточном отведении можно обнаружить, что поверхность возбужденного участка на очень короткий интервал, измеряемый тысячными долями секунды, становится заряженным электроотрицательно по отношению к соседнему, покоящемуся участку, т.е. при возбуждении происходит т.н. "перезарядка мембраны". Точные измерения показали, что амплитуда ПД на 30-50 мв превышает величину МП. Причина этого состоит в том, что при возбуждении происходит не просто исчезновение ПП, а возникает разность потенциалов обратного знака, в результате чего наружная поверхность мембраны становится заряженной отрицательно по отношению у ее внутренней стороне.

    Потенциал действия протекает фазно. Временной ход потенциала действия включает четыре последовательных этапа: локальный ответ, деполяризацию, реполяризацию и следовые потенциалы (рис. 2). В ПД принято различать его пик (т.н. спайк - spike) и следовые потенциалы. Пик ПД имеет восходящую и нисходящую фазы. Перед восходящей фазой регистрируется более или менее выраженный т.н. местный потенциал, или локальный ответ. Поскольку во время восходящей фазы исчезает исходная поляризация мембраны, ее называют фазой деполяризации; соответственно нисходящую фазу, в течение которой поляризация мембраны возвращается к исходному уровню, называется фазой реполяризации. Продолжительность пика ПД в нервных и скелетных мышечных волокнах варьирует в пределах 0,4-5,0 мсек. При этом фаза реполяризации всегда продолжительнее.

    Рис. 2. Фазы и временной ход потенциала действия.

    Кроме пика, в ПД различают два следовых потенциала - следовую деполяризацию (следовой отрица-тельный потенциал) и следовую гиперполяризацию (следовой положи-тельный потенциал. Амплитуда этих потенциалов не превышает нескольких милливольт, а длительность варьирует от нескольких десятков до сотен миллисекунд. Следовые потенциалы связаны с восстановительными процессами, развивающимися в мышцах и нерве после окончания возбуждения.

    Промежуток времени, в течение которого сохраняется активное состояние в виде ПД, неодинаков в разных возбудимых структурах. В нейронах он составляет около 1 мс, в волокнах скелетных мышц – 10 мс, в миокарде достигает 200–250 мс.

    Левое крыло графической записи ПД, отражающее изменение потенциала в электроположительную сторону называется деполяризацией. Область электроположительности носит название овершута, правое крыло ПД, свидетельствующее о восстановлении исходного поляризованного состояния мембраны принято называть реполяризацией. Часто, но не всегда возвращение ПД к исходному уровню в состоянии покоя происходит с наличием фаз в форме так называемых следовых потенциалов. Следовые потенциалы неодинаковы в мышцах и нервах. В волокнах скелетных мышц фаза реполяризации очень замедлена. Примерно через 1 мс после начала ПД наблюдается отчетливый перегиб крыла реполяризации – это следовая деполяризация. В нейроне чаще всего кривая реполяризации быстро пересекает уровень МПП и на некоторое время потенциал мембраны становится более электроотрицательным, чем МП. Это явление называют следовой гиперполяризацией.

    Повышение проницаемости мембраны для ионов Na + продолжается в нервных клетках очень короткое время. Связано оно с кратковременным открытием т.н. Na + -каналов (точнее, заслонок М в этих каналах), которое затем сменяется срочным закрытием Na+-пор с помощью т.н. Н-ворот. Этот процесс называется натриевой инактивацией. В результате поток Na в клетку прекращается.

    Наличие специальных Na- и К- каналов и сложного механизма запирания и открытия ворот изучено биофизиками достаточно хорошо. Показано, что существуют избирательные механизмы, регулирующие те или иные каналы. Например, яд тетродотоксин блокирует только Na-поры, а тетраэтиламмоний - только К-поры. Показано, что у некоторых клеток возникновение возбуждения связано в изменением проницаемости мембраны для Са ++ , в других - для Mg + . Исследования механизмов изменения проницаемости мембран продолжаются.

    В результате Na-инактивации и одновременного увеличения К- проницаемости происходит усиленный выход положительных ионов К+ из протоплазмы во внешний раствор. В итоге этих двух процессов происходит восстановление поляризованного состояния мембраны (реполяризация) , и наружная ее поверхность вновь приобретает положительный заряд. В дальнейшем происходят процессы восстановления нормального ионного состава клетки и необходимого градиента концентрации ионов за счет активизации деятельности Na-К-насоса. В результате повышения проводимости резко возрастает поток катионов Na + , поэтому отрицательный заряд в клетке вблизи внутренней стороны поверхности мембраны также резко уменьшается вплоть до преобладания положительных зарядов. В результате происходит изменение знака потенциала, достигающего +30 мВ. После этого проводимость мембраны дляNa + также резко снижается.

    Для нормального протекания ПД играет существенную роль и изменение проводимости мембраны для K + , которая начинает возрастать позже возрастания проводимости дляNa + . Увеличение относительно медленного выходаK + из клетки в фазу снижения проводимости дляNa + вызывает реполяризацию мембраны.

    Таким образом, в живой клетке существуют два различных типа движения ионов через мембрану. Один из них осуществляется по градиенту концентрации ионов и не требует затраты энергии, поэтому его называют пассивным транспортом. Он ответственен за возникновение МП и ПД и ведет в конечном итоге к выравниванию концентраций ионов по обе стороны клеточной мембраны. Второй тип движения ионов через мембрану, осуществляющийся против концентрационного градиента, состоит в "выкачивании" ионов Na+ из протоплазмы и "нагнетании" ионов К+ внутрь клетки. Этот тип ионного транспорта возможет лишь при условии затраты энергии - это активный транспорт. Он является результатом работы специальных ферментных систем (т.н. насосов), и благодаря ему восстанавливается исходная разность концентраций, необходимая для поддержания МП.

    Условия возникновения возбуждения . Для возникновения ПД необходимо, чтобы под влиянием какого-либо раздражителя произошло повышение ионной проницаемости мембраны возбудимой клетки. Однако, возбуждение возможно лишь при условии, если действующий на мембрану агент имеет некоторую минимальную (пороговую) величину, способную изменить мембранный потенциал (МП, или Ео) до некоторого критического уровня (Ек, критический уровень деполяризации). Стимулы, сила которых ниже пороговой величины, называются подпороговыми, выше - надпороговыми. Показано, что пороговая сила, необходимая для возникновения возбуждения при внутриклеточном микроэлектроде равна 10 -7 - 10-9 А.

    Таким образом, главным условием для возникновения ПД является следующее: мембранный потенциал должен стать равным или меньше критического уровня деполяризации (Ео <= Eк)

    Инактивация Na+-системы. Na+-системой обозначают механизм, позволяющий в течение нескольких долей миллисекунды многократно (до 20 раз) увеличить проводимость клеточной мембраны для Na+. Достигнув пикового значения, примерно через 0,5 мс проводимость мембраны для Na+ начинает снижаться. Быстрое снижение проводимости для Na+ называют инактивацией Na+-системы. В основе инактивации Na+-системы лежит переход в инактивационное состояние потенциалзависимых Na+-каналов. Поэтому скорость и степень снижения проводимости потенциалзависимы. Это означает, что чем больше отличается потенциал мембраны от мембранного потенциала покоя в сторону электроположительности, тем сильнее инактивирована Na+-система. Поэтому деполяризация мембраны вызывает снижение тока Na+ внутрь клетки. С одной стороны, это свидетельствует о том, что усиление тока Na+ само себе служит причиной его быстрого последующего снижения и начала развития реполяризации. С другой стороны, это означает, что если исходный потенциал клетки выше потенциала покоя на 20–30 мВ, то Na+-система полностью инактивирована и никакая последующая деполяризация уже не может активировать ее, т.е. вызвать резкое увеличение проводимости для Na+ и генерацию ПД.

    Потенциал действия (ПД) - это электрофизиологичес-кий процесс, выражающийся в быстром колебании мембранно-го потенциала вследствие перемещения ионов в клетку и из клетки и способный распространяться без декремента (без затухания). ПД обеспечивает передачу сигналов между нервны-ми клетками, нервными центрами и рабочими органами; в мышцах ПД обеспечивает процесс электромеханического сопряжения.

    А. Характеристика потенциала действия (ПД). Схема-тично ПД представлен на рис. 1.3. Величина ПД колеблется в пре-делах 80-130 мВ, длительность пика ПД нервного волокна 0,5-1 мс, волокна скелетной мышцы - до 10 мс с учетом замедления деполяризации в конце ее. Длительность ПД сердечной мышцы , 300-400 мс. Амплитуда ПД не зависит от силы раздражения - она всегда максимальна для данной клетки в конкретных условиях: ПД подчиняется закону «все или ничего», но не подчиняется закону силовых отношений - закону силы. ПД либо совсем не возникает при раздражении клетки, если оно мало, либо возникает и достига-ет максимальной величины, если раздражение является пороговым или сверхпороговым.

    Следует отметить, что слабое (подпороговое) раздражение может вызвать локальный потенциал. Он подчи-няется закону силы - с увеличением силы стимула величина его возрастает.

    В составе ПД различают четыре фазы:

    1 — деполяриза-ция , т. е. исчезновение заряда клетки - уменьшение мембранного потенциала до нуля;

    2 — инверсия , т. е. изменение заряда клетки на противоположный, когда внутренняя сторона мембраны клетки заряжается положительно, а внешняя - отрицательно (лат. шуегзю - переворачивание);

    3 — реполяризация, т. е. восстанов-ление исходного заряда клетки, когда внутренняя поверхность клеточной мембраны снова заряжается отрицательно, а наружная -положительно;

    4 - следовая гиперполяризация.

    Б. Механизм возникновения ПД. Если действие раздражи-теля на клеточную мембрану приводит к началу развития ПД, да-лее сам процесс развития ПД вызывает фазовые изменения прони-цаемости клеточной мембраны, что обеспечивает быстрое движение № + в клетку, а К + - из клетки. Это наиболее часто встре-чаемый вариант возникновения ПД. Величина мембранного потен-циала при этом сначала уменьшается, а затем снова восстанавли-вается до исходного уровня.

    На экране осциллографа отмеченные изменения мембранного потенциала предстают в виде пикового по-тенциала - ПД. Он возникает вследствие накопленных и поддер-живаемых ионными насосами градиентов концентраций ионов внут-ри и вне клетки, т.е. за счет потенциальной энергии в виде электрохимических градиентов ионов. Если заблокировать процесс выработки энергии, потенциалы действия некоторый период вре-мени будут возникать. Но после исчезновения градиентов концен-траций ионов (устранения потенциальной энергии) клетка генери-ровать ПД не будет. Рассмотрим фазы ПД.


    1. Фаза деполяризации (см. рис. 1.3 - 1). При действии депо-ляризующего раздражителя на клетку (медиатор, электрический ток) начальная частичная деполяризация клеточной мембраны про-исходит без изменения ее проницаемости для ионов. Когда деполя-ризация достигает примерно 50% пороговой величины (50% поро-гового потенциала), начинает повышаться проницаемость мембраны клетки для Ыа + , причем в первый момент сравнительно медленно.

    Естественно, что скорость входа Ыа + в клетку при этом невелика. В этот период, как и во время всей первой фазы (деполя-ризации), движущей силой, обеспечивающей вход Гч!а + в клетку, являются концентрационный и электрический градиенты. Напом-ним, что клетка внутри заряжена отрицательно (разноименные за-ряды притягиваются друг к другу), а концентрация № + вне клетки в 10-12 раз больше, чем внутри клетки.

    Условием, обеспечиваю-щим вход № + в клетку, является увеличение проницаемости кле-точной мембраны, которая определяется состоянием воротного ме-ханизма Ыа-каналов (в некоторых клетках, например, в кардиомиоцитах, в волокнах гладкой мышцы, важную роль в воз-никновении ПД играют и управляемые каналы для Са 2+).

    Когда деполяризация клетки достигает критической величины (Е, критический уровень деполяризации - КУД), которая обычно составляет 50 мВ (возможны и другие величины), проницаемость мембраны для Ыа* резко возрастает - открывается большое число потенциалзависимых ворот Ыа-каналов - и Ыа + лавиной устремля-ется в клетку.

    В результате интенсивного тока Ыа + внутрь клетки процесс деполяризации проходит очень быстро. Развивающаяся деполяризация клеточной мембраны вызывает дополнительное увеличение ее проницаемости и, естественно, проводимости Ыа + - открываются все новые и новые ворота №-каналов, что придает току Ыа + в клетку характер регенеративного процесса. В итоге ПП исчезает, становится равным нулю. Фаза деполяризации на этом заканчивается.

    2. Фаза инверсии. После исчезновения ПП вход Ыа + в клетку продолжается, поэтому число положительных ионов в клетке пре-восходит число отрицательных ионов, заряд внутри клетки стано-вится положительным, снаружи - отрицательным. Процесс пере-зарядки мембраны представляет собой вторую фазу потенциала действия - фазу инверсии (рис. 1.3 - 2).

    Теперь электрический градиент препятствует входу Ыа + внутрь клетки (положительные заряды отталкиваются друг от друга), Ыа-проводимость снижает-ся. Тем не менее, некоторый период времени (доли миллисекунды) № + продолжает входить в клетку — об этом свидетельствует про-должающееся нарастание ПД. Это означает, что концентрацион-ный градиент, обеспечивающий движение № + в клетку, сильнее электрического, препятствующего входу Ыа + в клетку.

    Во время деполяризации мембраны увеличивается проницаемость ее и для Са 2+ , он также идет в клетку, но в нервных волокнах, нейронах и в клетках скелетной мускулатуры роль Са 2+ в развитии ПД мал.а. В клетках гладкой мышцы и миокарда его роль существенна. Та-ким образом, вся восходящая часть пика ПД в большинстве случа-ев обеспечивается в основном входом № + в клетку.

    Примерно через 0,5-1 мс и более после начала деполяризации (это время зависит от вида клетки) рост ПД прекращается вслед-ствие закрытия ворот натриевых каналов и открытия ворот К-каналов, т. е. увеличения проницаемости для К + и резкого возрастания выхода его из клетки (см. рис. 1.3 - 2). Препятствуют также росту пика ПД электрический градиент Ыа + (клетка внутри в этот момент заряжена положительно), а также выход К + из клетки по каналам утечки.

    Поскольку К + находится преимущественно внутри клетки, он, согласно концентрационному градиенту, быстро выходит из клетки после открытия ворот К + -каналов, вследствие чего умень-шается число положительно заряженных ионов в клетке. Заряд клетки снова начинает уменьшаться. В фазу инверсии выходу К + из клетки способствует также и электрический градиент. К + вы-талкивается положительным зарядом из клетки и притягивается отрицательным зарядом снаружи клетки.

    Так продолжается до пол-ного исчезновения положительного заряда внутри клетки (до кон-ца фазы инверсии - рис. 1.3-2, пунктирная линия), когда начина-ется следующая фаза ПД - фаза реполяризации. Калий выходит из клетки не только по управляемым каналам, ворота которых от-крыты, но и по неуправляемым - каналам утечки, что несколько замедляет ход восходящей части ПД и ускоряет ход нисходящей составляющей ПД.

    Таким образом, изменение мембранного потенциала покоя ве-дет к последовательному открытию и закрытию электроуправляе-мых ворот ионных каналов и движению ионов согласно электрохи-мическому градиенту - возникновению ПД. Все фазы являются регенеративными - необходимо только достичь критического уров-ня деполяризации, далее ПД развивается за счет потенциальной энергии клетки в виде электрохимических градиентов, т. е. вторич-но активно.

    Амплитуда ПД складывается из величины ПП (мембранно-го потенциала покоящейся клетки) и величины фазы инверсии, составляющей у разных клеток 10-50 мВ. Если мембранный потенциал покоящейся клетки мал, амплитуда ПД этой клетки не-большая.

    3. Фаза реполяризации (рис. 1.3-3) связана с тем, что про-ницаемость клеточной мембраны для К + все еще высока (во-рота калиевых каналов открыты), К + продолжает быстро выходить из клетки, согласно концентрационному градиенту. Поскольку клетка теперь уже снова внутри имеет отрицательный заряд, а сна-ружи - положительный (см. рис. 1.3 - 3), электрический гради-ент препятствует выходу К + из клетки, что снижает его проводи-мость, хотя он продолжает выходить.

    Это объясняется тем, что действие концентрационного градиента выражено значительно сильнее электрического градиента. Вся нисходящая часть пика ПД обусловлена выходом К + из клетки. Нередко в конце ПД наблюда-ется замедление реполяризации, что объясняется уменьшением проницаемости клеточной мембраны для К + и замедлением выхо-да его из клетки из-за частичного закрытия ворот К-каналов. Вто-рая причина замедления тока К + из клетки связана с возрастани-ем положительного потенциала наружной поверхности клетки и формированием противоположно направленного электрического градиента.

    Таким образом, главную роль в возникновении ПД играет Ыа + , входящий в клетку при повышении проницаемости клеточ-ной мембраны и обеспечивающий всю восходящую часть пика ПД. При замене Ма + в среде на другой ион, например холин, ПД в нервной и мышечной клетках скелетной мускулатуры не возника-ет. Однако проницаемость мембраны для К + тоже играет важную роль. Если повышение проницаемости для К + предотвратить тетраэтиламмонием, мембрана после ее деполяризации реполяризуется гораздо медленнее, только за счет медленных неуправ-ляемых каналов (каналов утечки ионов), через которые К + будет выходить из клетки.

    Роль Са 2+ в возникновении ПД в нервных и мышечных клет-ках скелетной мускулатуры незначительна. Однако Са 2+ играет важную роль в возникновении ПД сердечной и гладкой мышц, в передаче импульсов от одного нейрона к другому, от нервного во-локна к мышечному, в обеспечении мышечного сокращения.

    4. Следовая гиперполяризация клеточной мембраны (рис. 1.3 -4) обычно является следствием еще сохраняющейся повышенной проницаемости клеточной мембраны для К + , она характерна для нейронов. Ворота К-каналов еще не полностью закрыты, поэтому К + продолжает выходить из клетки согласно концентрационному градиенту, что и ведет к гиперполяризации клеточной мембраны.

    Постепенно проницаемость клеточной мембраны возвращается к исходной (натриевые и калиевые ворота возвращаются в исходное состояние), а мембранный потенциал становится таким же, каким он был до возбуждения клетки. Ыа/К-помпа непосредственно за фазы потенциала действия не отвечает, хотя она и про-должает работать во время развития ПД.

    Следовая деполяризация также характерна для нейронов, она может быть зарегистрирована и в клетках скелетной мышцы. Ме-ханизм ее изучен недостаточно. Возможно, это связано с кратко-временным повышением проницаемости клеточной мембраны для Ыа + и входом его в клетку согласно концентрационному и электри-ческому градиентам.

    В. Запас ионов в клетке, обеспечивающих возникновение возбуждения (ПД), огромен. Концентрационные градиенты ионов в результате одного цикла возбуждения практически не изменяют-ся. Клетка может возбуждаться до 510 5 раз без подзарядки, то есть без работы Ыа/К-насоса.

    Число импульсов, которое гене-рирует и проводит нервное волокно, зависит от его толщины, что определяет запас ионов. Чем толще нервное волокно, тем больше запас ионов и больше импульсов оно может генерировать (от не-скольких сот до нескольких сотен тысяч) без участия №/К-насоса. Однако в тонких С-волокнах на возникновение одного ПД рас-ходуется около 1 % концентрационных градиентов № + и К + .

    Таким образом, если заблокировать выработку энергии, то клетка будет еще многократно возбуждаться и в этом случае. В реальной же действительности Ыа/К-насос постоянно переносит Ыа + из клет-ки, а К + возвращает в клетку, в результате постоянно поддержи-вается концентрационный градиент № + и К + , что осуществляет-ся за счет непосредственного расхода энергии, источником которой является АТФ.

    Раздражители

    По природе раздражители подразделяют на:
    • физические (звук, свет, температура, вибрация, осмотическое давление), особое значение для биологических систем имеют электрические раздражители;
    • химические (ионы, гормоны, нейромедиаторы, пептиды, ксенобиотики);
    • информационные (голосовые команды, условные знаки, условные стимулы).

    По биологическому значению раздражители подразделяют на:
    • адекватные – раздражители, для восприятия которых биологическая система имеет специальные приспособления;
    • неадекватные – раздражители, не соответствующие природной специализации рецепторных клеток, на которые они действуют.

    Раздражитель вызывает возбуждение только в том случае, если он достаточно силен. Порог возбуждения – минимальная сила раздражителя, достаточная для того, чтобы вызвать возбуждение клетки. Выражение «порог возбуждения» имеет несколько синонимов: порог раздражения, пороговая сила раздражителя, порог силы.

    Возбуждение как активная реакция клетки на раздражитель

    Реакция клетки на внешнее воздействие (раздражение) отличается от реакции небиологических систем следующими особенностями:
    • энергией для реакции клетки служит не энергия раздражителя, а энергия, образующаяся в результате метаболизма в самой биологической системе;
    • сила и форма реакции клетки не определяется силой и формой внешнего воздействия (если сила раздражителя выше пороговой).

    В некоторых специализированных клетках реакция на раздражитель проявляется особенно интенсивно. Такую интенсивную реакцию называют возбуждением. Возбуждение – активная реакция специализированных (возбудимых) клеток на внешнее воздействие, проявляющаяся в том, что клетка начинает выполнять присущие ей специфические функции.

    Возбудимая клетка может находиться в двух дискретных состояниях:
    • состоянии покоя (готовность к реагированию на внешнее воздействие, совершение внутренней работы);
    • состоянии возбуждения (активное выполнение специфических функций, совершение внешней работы).

    В организме существует 3 типа возбудимых клеток:
    • нервные клетки (возбуждение проявляется генерацией электрического импульса);
    • мышечные клетки (возбуждение проявляется сокращением);
    • секреторные клетки (возбуждение проявляется выбросом в межклеточное пространство биологически активных веществ).

    Возбудимость – способность клетки переходить из состояния покоя в состояние возбуждения при действии раздражителя. Разные клетки имеют различную возбудимость. Возбудимость одной и той же клетки меняется в зависимости от ее функционального состояния.

    Возбудимая клетка в состоянии покоя

    Мембрана возбудимой клетки поляризована. Это означает, что имеется постоянная разность потенциалов между внутренней и наружной поверхностью клеточной мембраны, которую называют мембранный потенциал (МП). В состоянии покоя величина МП составляет –60…–90 мВ (внутренняя сторона мембраны заряжена отрицательно относительно наружной). Значение МП клетки в состоянии покоя называют потенциалом покоя (ПП). МП клетки можно измерять, разместив один электрод внутри, а другой снаружи клетки (рис. 1 А) .

    Уменьшение МП относительно его нормального уровня (ПП) называют деполяризацией , а увеличение – гиперполяризацией . Под реполяризацией понимают восстановление исходного уровня МП после его изменения (см. рис. 1 Б).

    Электрические и физиологические проявления возбуждения

    Рассмотрим различные проявления возбуждения на примере раздражения клетки электрическим током (рис. 2).

    При действии слабых (подпороговых) импульсов электрического тока в клетке развивается электротонический потенциал. Электротонический потенциал (ЭП) – сдвиг мембранного потенциала клетки, вызываемый действием постоянного электрического тока . ЭП есть пассивная реакция клетки на электрический раздражитель; состояние ионных каналов и транспорт ионов при этом не изменяется. ЭП не проявляется физиологической реакцией клетки. Поэтому ЭП не является возбуждением.

    При действии более сильного подпорогового тока возникает более пролонгированный сдвиг МП – локальный ответ. Локальный ответ (ЛО) – активная реакция клетки на электрический раздражитель, однако состояние ионных каналов и транспорт ионов при этом изменяется незначительно. ЛО не проявляется заметной физиологической реакцией клетки. ЛО называют местным возбуждением , так как это возбуждение не распространяется по мембранам возбудимых клеток.

    При действии порогового и сверхпорогового тока в клетке развивается потенциал действия (ПД). ПД характеризуется тем, что значение МП клетки очень быстро уменьшается до 0 (деполяризация), а затем мембранный потенциал приобретает положительное значение (+20…+30 мВ), т. е. внутренняя сторона мембраны заряжается положительно относительно наружной. Затем значение МП быстро возвращается к исходному уровню. Сильная деполяризация клеточной мембраны во время ПД приводит к развитию физиологических проявлений возбуждения (сокращение, секреция и др.). ПД называют распространяющимся возбуждением , поскольку, возникнув в одном участке мембраны, он быстро распространяется во все стороны.

    Механизм развития ПД практически одинаков для всех возбудимых клеток. Механизм сопряжения электрических и физиологических проявлений возбуждения различен для разных типов возбудимых клеток (сопряжение возбуждения и сокращения, сопряжение возбуждения и секреции).

    Устройство клеточной мембраны возбудимой клетки

    В механизмах развития возбуждения участвуют 4 вида ионов: K+ , Na+ , Ca++ , Cl – (ионы Ca++ участвуют в процессах возбуждения некоторых клеток, например кардиомиоцитов, а ионы Cl – важны для развития торможения). Мембрана клетки, представляющая собой липидный бислой, непроницаема для этих ионов. В мембране существуют 2 типа специализированных интегральных белковых систем, которые обеспечивают транспорт ионов через клеточную мембрану: ионные насосы и ионные каналы.

    Ионные насосы и трансмембранные ионные градиенты

    Ионные насосы (помпы) – интегральные белки, которые обеспечивают активный перенос ионов против градиента концентрации. Энергией для транспорта служит энергия гидролиза АТФ. Различают Na+ / K+ помпу (откачивает из клетки Na+ в обмен на К+), Ca++ помпу (откачивает из клетки Ca++), Cl– помпу (откачивает из клетки Cl –).

    В результате работы ионных насосов создаются и поддерживаются трансмембранные ионные градиенты:
    • концентрация Na+, Ca++, Cl – внутри клетки ниже, чем снаружи (в межклеточной жидкости);
    • концентрация K+ внутри клетки выше, чем снаружи.

    Ионные каналы

    Ионные каналы – интегральные белки, которые обеспечивают пассивный транспорт ионов по градиенту концентрации. Энергией для транспорта служит разность концентрации ионов по обе стороны мембраны (трансмембранный ионный градиент).

    Неселективные каналы
    • пропускают все типы ионов, но проницаемость для ионов K+ значительно выше, чем для других ионов;
    • всегда находятся в открытом состоянии.

    Селективные каналы обладают следующими свойствами:
    • пропускают только один вид ионов; для каждого вида ионов существует свой вид каналов;
    • могут находиться в одном из 3 состояний: закрытом, активированном, инактивированном.

    Избирательная проницаемость селективного канала обеспечивается селективным фильтром , который образован кольцом из отрицательно заряженных атомов кислорода, которое находится в самом узком месте канала.

    Изменение состояния канала обеспечивается работой воротного механизма , который представлен двумя белковыми молекулами. Эти белковые молекулы, так называемые активационные ворота и инактивационные ворота, изменяя свою конформацию, могут перекрывать ионный канал.

    В состоянии покоя активационные ворота закрыты, инактивационные ворота открыты (канал закрыт) (рис. 3). При действии на воротную систему сигнала активационные ворота открываются и начинается транспорт ионов через канал (канал активирован). При значительной деполяризации мембраны клетки инактивационные ворота закрываются и транспорт ионов прекращается (канал инактивирован). При восстановлении уровня МП канал возвращается в исходное (закрытое) состояние.

    В зависимости от сигнала, который вызывает открытие активационных ворот, селективные ионные каналы подразделяют на:
    • хемочувствительные каналы – сигналом к открытию активационных ворот является изменение конформации ассоциированного с каналом белка-рецептора в результате присоединения к нему лиганда;
    • потенциалчувствительные каналы – сигналом к открытию активационных ворот является снижение МП (деполяризация) клеточной мембраны до определенного уровня, который называют критическим уровнем деполяризации (КУД).

    Механизм формирования потенциала покоя

    Мембранный потенциал покоя образуется главным образом благодаря выходу К+ из клетки через неселективные ионные каналы. Утечка из клетки положительно заряженных ионов приводит к тому, что внутренняя поверхность мембраны клетки заряжается отрицательно относительно наружной.

    Мембранный потенциал, возникающий в результате утечки К+ , называют «равновесным калиевым потенциалом» (Ек ). Его можно рассчитать по равнению Нернста

    где R – универсальная газовая постоянная,
    Т – температура (по Кельвину),
    F – число Фарадея,
    [К+] нар – концентрация ионов К+ снаружи клетки,
    [К+] вн – концентрация ионов К+ внутри клетки.

    ПП, как правило, очень близок к Ек, но не точно равен ему. Эта разница объясняется тем, что свой вклад в формирование ПП вносят:

    • поступление в клетку Na+ и Cl– через неселективные ионные каналы; при этом поступление в клетку Cl– дополнительно гиперполяризует мембрану, а поступление Na+ – дополнительно деполяризует ее; вклад этих ионов в формирование ПП невелик, так как проницаемость неселективных каналов для Cl– и Na + в 2,5 и 25 раза ниже, чем для К+ ;

    • прямой электрогенный эффект Na+ /К+ ионного насоса, возникающий в том случае, если ионный насос работает асимметрично (количество переносимых в клетку ионов K+ не равно количеству выносимых из клетки ионов Na+).

    Механизм развития потенциала действия

    В потенциале действия выделяют несколько фаз (рис. 4):

    • фаза деполяризации;
    • фаза быстрой реполяризации;
    • фаза медленной реполяризации (отрицательный следовый потен­циал);
    • фаза гиперполяризации (положительный следовый потенциал).

    Фаза деполяризации . Развитие ПД возможно только при действии раздражителей, которые вызывают деполяризацию клеточной мембраны. При деполяризации клеточной мембраны до критического уровня деполяризации (КУД) происходит лавинообразное открытие потенциалчувствительных Na+-каналов. Положительно заряженные ионы Na+ входят в клетку по градиенту концентрации (натриевый ток), в результате чего мембранный потенциал очень быстро уменьшается до 0, а затем приобретает положительное значение. Явление изменения знака мембранного потенциала называют реверсией заряда мембраны.

    Фаза быстрой и медленной реполяризации . В результате деполяризации мембраны происходит открытие потенциалчувствительных К+ -каналов. Положительно заряженные ионы К+ выходят из клетки по градиенту концентрации (калиевый ток), что приводит к восстановлению потенциала мембраны. В начале фазы интенсивность калиевого тока высока и реполяризация происходит быстро, к концу фазы интенсивность калиевого тока снижается и реполяризация замедляется.

    Фаза гиперполяризации развивается за счет остаточного калиевого тока и за счет прямого электрогенного эффекта активировавшейся Na+ / K+ помпы.

    Овершут – период времени, в течение которого мембранный потенциал имеет положительное значение.

    Пороговый потенциал – разность между мембранным потенциалом покоя и критическим уровнем деполяризации. Величина порогового потенциала определяет возбудимость клетки – чем больше пороговый потенциал, тем меньше возбудимость клетки.

    Изменение возбудимости клетки при развитии возбуждения

    Если принять уровень возбудимости клетки в состоянии физиологического покоя за норму, то в ходе развития цикла возбуждения можно наблюдать ее колебания. В зависимости от уровня возбудимости выделяют следующие состояния клетки (см. рис. 4).

    • Супернормальная возбудимость (экзальтация ) – состояние клетки, в котором ее возбудимость выше нормальной. Супернормальная возбудимость наблюдается во время начальной деполяризации и во время фазы медленной реполяризации. Повышение возбудимости клетки в эти фазы ПД обусловлено снижением порогового потенциала по сравнению с нормой.

    • Абсолютная рефрактерность – состояние клетки, в котором ее возбудимость падает до нуля. Никакой, даже самый сильный, раздражитель не может вызвать дополнительного возбуждения клетки. Во время фазы деполяризации клетка невозбудима, поскольку все ее Na+ -каналы уже находятся в открытом состоянии.

    • Относительная рефрактерность – состояние, в котором возбуди­мость клетки значительно ниже нормальной; только очень сильные раздражители могут вызвать возбуждение клетки. Во время фазы реполяризации каналы возвращаются в закрытое состояние и возбудимость клетки постепенно восстанавливается.

    • Субнормальная возбудимость характеризуется незначительным снижением возбудимости клетки ниже нормального уровня. Это уменьшение возбудимости происходит вследствие возрастания порогового потенциала во время фазы гиперполяризации.

    Между наружной поверхностью клетки и ее цитоплазмой в состоянии покоя существует разность потенциалов около 0,06-0,09 в, причем поверхность клетки заряжена электроположительно по отношению к цитоплазме. Эту разность потенциалов называют потенциалом покоя или мембранным потенциалом. Точное измерение потенциала покоя возможно только с помощью микроэлектродов, предназначенных для внутриклеточного отведения токов, очень мощных усилителей и чувствительных регистрирующих приборов - осциллографов.

    Микроэлектрод (рис. 67, 69) представляет собой тонкий стеклянный капилляр, кончик которого имеет диаметр около 1 мкм. Этот капилляр заполняют солевым раствором, погружают в него металлический электрод и соединяют с усилителем и осциллографом (рис. 68). Как только микроэлектрод прокалывает покрывающую клетку мембрану, луч осциллографа отклоняется вниз из своего исходного положения и устанавливается на новом уровне. Это свидетельствует о наличии разности потенциалов между наружной и внутренней поверхностью клеточной мембраны.

    Наиболее полно происхождение потенциала покоя объясняет так называемая мембранно-ионная теория. Согласно этой теории все клетки покрыты мембраной, имеющей неодинаковую проницаемость для различных ионов. В связи с этим внутри клетки в цитоплазме в 30-50 раз больше ионов калия, в 8-10 раз меньше ионов натрия и в 50 раз меньше ионов хлора, чем на поверхности. В состоянии покоя клеточная мембрана более проницаема для ионов калия, чем для ионов натрия. Диффузия положительно заряженных ионов калия из цитоплазмы на поверхность клетки придает наружной поверхности мембраны положительный заряд.

    Таким образом, поверхность клетки в покое несет на себе положительный заряд, тогда как внутренняя сторона мембраны оказывается заряженной отрицательно за счет ионов хлора, аминокислот и других крупных органических анионов, которые через мембрану практически не проникают (рис. 70).

    Потенциал действия

    Если участок нервного или мышечного волокна подвергнуть действию достаточно сильного раздражителя, то в этом участке возникает возбуждение, проявляющееся в быстром колебании мембранного потенциала и называемое потенциалом действия .

    Потенциал действия можно зарегистрировать либо с помощью электродов, приложенных к внешней поверхности волокна (внеклеточное отведение), либо микроэлектрода, введенного в цитоплазму (внутриклеточное отведение).

    При внеклеточном отведении можно обнаружить, что поверхность возбужденного участка на очень короткий период, измеряемый тысячными долями секунды, становится заряженной электроотрицательно по отношению к покоящемуся участку.

    Причина возникновения потенциала действия - изменение ионной проницаемости мембраны. При раздражении проницаемость клеточной мембраны для ионов натрия повышается. Ионы натрия стремятся внутрь клетки, так как, во-первых, они заряжены положительно и их влекут внутрь электростатические силы, во-вторых, концентрация их внутри клетки невелика. В покое клеточная мембрана была малопроницаемой для ионов натрия. Раздражение изменило проницаемость мембраны, и поток положительно заряженных ионов натрия из внешней среды клетки в цитоплазму значительно превышает поток ионов калия из клетки наружу. В результате внутренняя поверхность мембраны становится заряженной положительно, а наружная вследствие потери положительно заряженных ионов натрия отрицательно. В этот момент и регистрируется пик потенциала действия.

    Повышение проницаемости мембраны для ионов натрия продолжается очень короткое время. Вслед за этим в клетке возникают восстановительные процессы, приводящие к тому, что проницаемость мембраны для ионов натрия вновь понижается, а для ионов калия возрастает. Поскольку ионы калия также заряжены положительно, то, выходя из клетки, они восстанавливают исходные отношения снаружи и внутри клетки.

    Накопления ионов натрия внутри клетки при многократном возбуждении ее не происходит потому, что ионы натрия эвакуируются из нее постоянно за счет действия специального биохимического механизма, называемого "натриевым насосом". Есть данные и об активном транспорте ионов калия с помощью "натрий-калиевого насоса".

    Таким образом, согласно мембранно-ионной теории в происхождении биоэлектрических явлений решающее значение имеет избирательная проницаемость клеточной мембраны, обусловливающая разный ионный состав на поверхности и внутри клетки, а следовательно, и разный заряд этих поверхностей. Следует заметить, что многие положения мембранно-ионной теории все еще дискуссионны и нуждаются в дальнейшей разработке.

    2024 med103.ru. Я самая красивая. Мода и стиль. Разные хитрости. Уход за лицом.