Формирование мембранного потенциала покоя. Мембранный потенциал

Любая живая клетка покрыта полупроницаемой мембраной, через которую осуществляется пассивное движение и активный избирательный транспорт положительно и отрицательно заряженных ионов. Благодаря этому переносу между наружной и внутренней поверхностью мембраны имеется разность электрических зарядов (потенциалов) – мембранный потенциал. Существует три отличающихся друг от друга проявления мембранного потенциала – мембранный потенциал покоя, местный потенциал , или локальный ответ , и потенциал действия .

Если на клетку не действуют внешние раздражители, то мембранный потенциал долго сохраняется постоянным. Мембранный потенциал такой покоящейся клетки называется мембранным потенциалом покоя. Для наружной поверхности мембраны клетки потенциал покоя всегда положителен, а для внутренней поверхности клеточной мембраны всегда отрицателен. Принято измерять потенциал покоя на внутренней поверхности мембраны, т.к. ионный состав цитоплазмы клетки более стабилен, чем межклеточной жидкости. Величина потенциала покоя относительно постоянна для каждого типа клеток. Для поперечнополосатых мышечных клеток она составляет от –50 до –90 мВ, а для нервных клеток от –50 до –80 мВ.

Причинами возникновения потенциала покоя являются разная концентрация катионов и анионов снаружи и внутри клетки, а также избирательная проницаемость для них клеточной мембраны. Цитоплазма покоящейся нервной и мышечной клетки содержит примерно в 30–50 раз больше катионов калия, в 5–15 раз меньше катионов натрия и в 10–50 раз меньше анионов хлора, чем внеклеточная жидкость.

В состоянии покоя практически все натриевые каналы мембраны клетки закрыты, а большинство калиевых каналов открыто. Всякий раз, когда ионы калия наталкиваются на открытый канал, они проходят через мембрану. Поскольку внутри клетки ионов калия гораздо больше, то осмотическая сила выталкивает их из клетки. Вышедшие катионы калия увеличивают положительный заряд на наружной поверхности клеточной мембраны. В результате выхода ионов калия из клетки должна была бы вскоре уравняться их концентрация внутри и вне клетки. Однако этому препятствует электрическая сила отталкивания положительных ионов калия от положительно заряженной наружной поверхности мембраны.

Чем больше становится величина положительного заряда на наружной поверхности мембраны, тем труднее ионам калия проходить из цитоплазмы через мембрану. Ионы калия будут выходить из клетки до тех пор, пока сила электрического отталкивания не станет равной силе осмотического давления К + . При таком уровне потенциала на мембране вход и выход ионов калия из клетки находятся в равновесии, поэтому электрический заряд на мембране в этот момент называется калиевым равновесным потенциалом . Для нейронов он равен от –80 до –90 мВ.


Поскольку в покоящейся клетке почти все натриевые каналы мембраны закрыты, то ионы Nа + поступают в клетку по концентрационному градиенту в незначительном количестве. Они лишь в очень малой степени возмещают потерю положительного заряда внутренней средой клетки, вызванную выходом ионов калия, но не могут эту потерю существенно компенсировать. Поэтому проникновение в клетку (утечка) ионов натрия приводит лишь к незначительному снижению мембранного потенциала, вследствие чего мембранный потенциал покоя имеет несколько меньшую величину по сравнению с калиевым равновесным потенциалом.

Таким образом, выходящие из клетки катионы калия совместно с избытком катионов натрия во внеклеточной жидкости создают положительный потенциал на наружной поверхности мембраны покоящейся клетки.

В состоянии покоя плазматическая мембрана клетки хорошо проницаема для анионов хлора. Анионы хлора, которых больше во внеклеточной жидкости, диффундируют внутрь клетки и несут с собой отрицательный заряд. Полного уравнивания концентраций ионов хлора снаружи и внутри клетки не происходит, т.к. этому препятствует сила электрического взаимного отталкивания одноименных зарядов. Создается хлорный равновесный потенциал, при котором вход ионов хлора в клетку и их выход из нее находятся в равновесии.

Мембрана клетки практически непроницаема для крупных анионов органических кислот. Поэтому они остаются в цитоплазме и совместно с поступающими анионами хлора обеспечивают отрицательный потенциал на внутренней поверхности мембраны покоящейся нервной клетки.

Важнейшее значение мембранного потенциала покоя состоит в том, что он создает электрическое поле, которое воздействует на макромолекулы мембраны и придает их заряженным группам определенное положение в пространстве. Особенно важно то, что это электрическое поле обусловливает закрытое состояние активационных ворот натриевых каналов и открытое состояние их инактивационных ворот (рис. 61, А). Этим обеспечивается состояние покоя клетки и готовности ее к возбуждению. Даже относительно небольшое уменьшение мембранного потенциала покоя открывает активационные «ворота» натриевых каналов, что выводит клетку из состояния покоя и дает начало возбуждению.

Электрический заряд, подобно массе, является фундаментальным свойством веществ. Существует два типа зарядов, условно обозначенные как положительный и отрицательный.

Каждое вещество имеет электрический заряд, величина которого может быть положительной, отрицательной или быть равной нулю. Например, электроны заряжены отрицательно, а протоны - положительно. Поскольку каждый атом содержит один или более электронов и равное количество протонов, общее число зарядов в макроскопическом объекте - чрезвычайно большое, но в целом такой объект не заряжен или имеет небольшой заряд.

Заряд электрона является по абсолютной величине самым маленьким.

Электрическое поле. Закон Кулона

Каждый заряженный объект образует в окружающем его пространстве электрическое поле. Электрическое поле является видом материи, посредством которой заряженные объекты взаимодействуют друг с другом. Пробный заряд, внесённый в электрическое поле другого заряда "чувствует" присутствие этого поля. Он будет притягиваться к заряду, создающему электрическое поле, или отталкиваться от него.

Закон Кулона определяет электрическую силу F, действующую между двумя точечными зарядами q 1 и q 2 :

k - константа, определяемая выбранными условиями; r - расстояние между зарядами.

Согласно закону Кулона, сила действует в направлении линии, соединяющей два заряда. Величина силы, действующей на заряды, пропорциональна величине каждого из зарядов и обратно пропорциональна квадрату расстояния между ними.

Электрическое поле можно представить в виде силовых линий, показывающих направление электрических сил. Эти силы направлены от заряда, когда он положительный, и к заряду, если он отрицательный. Если положительный заряд поместить в электрическое поле, он подвергается действию силы в направлении поля. Отрицательный заряд подвергается силе, направленной противоположно направлению поля.

Характеристики электрического поля

1) Напряжённость электрического поля. Каждый электрический заряд производит вокруг себя электрическое поле. Если другой заряд q внести в это поле, то на него будет действовать сила F, пропорциональная q и напряжённости электрического поля E:

Напряжённость электрического поля E (или просто напряжённость) в любой точке определяется как электрическая сила F, которая действует на положительной заряд q , помещённый в эту точку:

E - векторная величина, то есть имеет как величину, так и направление. Единицей измерения напряжённости является вольт на метр [В/м].

Принцип наложения (суперпозиции) указывает, что если электрическое поле создают множество зарядов, суммарная напряжённость определятся сложением напряжённостей, созданных каждым зарядом, по правилам сложения векторов.

2) Электрический потенциал. Чтобы переместить заряд против действующей на него электрической силы необходимо выполнить работу. Эта работа не зависит от пути перемещения заряда в электрическом поле, но зависит от начального и конечного положения заряда.

Если заряд перемещается из одной точки в другую против электрической силы, его потенциальная электростатическая энергия увеличивается. Электрический потенциал в любой точке равен электростатической потенциальной энергии W p , которую имеет положительный заряд q в этой точке: φ = W p /q (4) .

Можно также сказать, что электрический потенциал в точке равен работе, которую необходимо совершить против электрических сил, чтобы переместить положительный заряд из данной точки на большое расстояние, где потенциал электрического поля равен нулю. Электрический потенциал является скалярной величиной и измеряется в вольтах (В ).

Напряжённость электрического поля является отрицательным градиентом электрического потенциала - показателя изменения потенциала с расстоянием x : E → = - dφ/dx . С помощью приборов можно измерить разность потенциалов, но не напряжённость поля. Последняя может быть вычислена, если использовать зависимость между E → и Δφ : где Δφ = E·l - расстояние между двумя токами электрического поля.

Мембранный потенциал покоя

Каждая клетка превращает часть своей метаболической энергии в электростатическую энергию. Источником электрического поля клетки является плазматическая мембрана. Существует разность потенциалов между внутренней и внешней поверхностями плазматической мембраны. Эта разность потенциалов называется мембранным потенциалом .

Разность потенциалов между внутренней и внешней средами клетки может измеряться непосредственно и довольно точно. Для этого используют микроэлектрод, представляющий собой стеклянную микропипетку с диаметром кончика до 1мкм , заполненную концентрированным раствором KCl. Микроэлектрод подключают к усилителю напряжения регистрирующего устройства. Можно измерять мембранный потенциал мышечных, нервных клеток или клеток других тканей. Другой электрод (референтный) установлен на поверхности ткани.

Когда кончик микроэлектрода находится вне клетки, его потенциал по отношению к референтному электроду равен нулю. Если конец электрода погружают в клетку, прокалывая плазматическую мембрану, разность потенциалов резко становится отрицательной. На шкале измерительного устройства регистрируется разность потенциалов между внутренней и внешней средами клетки. Эта разность потенциалов называется трансмембранной, или мембранным потенциалом.


Если клетка находится в состоянии покоя, её мембранный потенциал имеет отрицательное значение и устойчивую величину. Обычно его называют мембранным потенциалом покоя . Мембранный потенциал покоя клеток различных тканей составляет от - 55 милливольт (мВ ) до - 100 мВ .

При определенных физиологических условиях могут происходить изменения мембранного потенциала. Изменения его в положительном направлении называется деполяризацией плазматической мембраны. Смещение мембранного потенциала в отрицательном направлении называется гиперполяризацией .

Биофизические основы мембранного потенциала покоя

Электрические явления в плазматической мембране определяются распределением ионов между внутренней и внешней сторонами мембраны. Из химического анализа известно, что концентрация ионов внутриклеточной жидкости сильно отличается от концентрации ионов во внеклеточной жидкости. Термин "внеклеточная жидкость" имеет отношение ко всем жидкостям вне клеток (межклеточное вещество, кровь, лимфа и т.п.). В таблице представлены концентрации основных ионов в мышечных клетках млекопитающих и внеклеточной жидкости (миллимоли на литр).

Существуют значительные различия между концентрацией основных ионов внутри и вне клетки. Внеклеточная жидкость имеет высокую концентрацию ионов натрия и хлора. Внутриклеточная жидкость имеет высокую концентрацию калия и различных органических анионов (A -) (заряженные группы белков).

Различие между концентрациями натрия и калия во внеклеточной и внутриклеточной жидкостях обусловлены деятельностью натрий-калиевого насоса, который выкачивает за один цикл 3 иона натрия из клетки и закачивает 2 иона калия в клетку против электрохимического градиента указанных ионов. Основная функция натрия-калия насоса - поддержание различия концентраций ионов натрия и калия по обе стороны плазматической мембраны.

В состоянии покоя проницаемость плазматической мембраны для ионов калия значительно превышает проницаемость мембраны для ионов натрия. В нервных клетках соотношения проницаемости соответствующих ионов составляет 1:0,04.

Этот факт дает возможность объяснять существование мембранного потенциала покоя.

Ионы калия стремятся покинуть клетку из-за их высокой внутренней концентрации. При этом перемещения через мембрану внутриклеточных анионов из-за их больших размеров не происходит. Незначительное поступление ионов натрия внутрь клетки также не компенсирует выход ионов калия наружу, так как проницаемость мембраны в покое для ионов натрия мала.

Следовательно, снаружи клетка приобретает дополнительно положительный заряд и внутри остаётся избыток отрицательного заряда.

Диффузия калия через мембрану - процесс ограниченный. Ионы калия, проникающие через мембрану, создают электрическое поле, которое задерживает диффузию других ионов калия. По мере выхода из клетки калия электрическое поле нарастает и, в конечном итоге, напряжённость достигает такого значения, когда поток калия через мембрану прекращается. Состояние, при котором поток ионов по их концентрационному градиенту уравновешивается мембранным потенциалом, называется состоянием электрохимического равновесия ионов. Величина такого мембранного потенциала равновесия определяется уравнением Нернста (при этом считают, что мембрана проницаема только для одного вида ионов) :

R - универсальная газовая постоянная, T - термодинамическая температура, z - электрический заряд иона, F - постоянная Фарадея, i и o - внутриклеточная и внеклеточная концентрации ионов калия соответственно.

Вычисления, основанные на уравнении Нернста, указывают, что внутренняя и внешняя концентрация иона хлора также соответствует состоянию электрохимического равновесия, но концентрация натрия далека от равновесия с мембранным потенциалом мембраны.

Уравнение Нернста показывает, что концентрационный градиент ионов калия определяет величину мембранного потенциала покоя только в первом приближении. Рассчитанные величины мембранного потенциала совпадают с экспериментально полученными только при высокой концентрации калия вне клетки.

Более точная величина мембранного потенциала покоя может быть вычислена из уравнения Гольдмана-Ходжкина, в котором учитываются концентрации и проницаемость мембраны для трёх основных ионов внутри- и внеклеточной жидкостей:

Также в поддержании мембранного потенциала покоя участвует непосредственно натрий-калий насос, выкачивая три иона натрия из клетки и закачивая лишь два иона калия. В результате мембранный потенциал покоя становится более отрицательным, чем был бы, если бы создавался только пассивным перемещением ионов через мембрану.

Потенциал действия

Если через мембрану нервной или мышечной клетки проходит кратковременный электрический ток, то мембранный потенциал подвергается последовательным изменениям, которые специфичны и уникальны для возбудимых клеток. Возбудимые ткани можно стимулировать также механическими или химическими средствами, но в экспериментальной работе, как правило, используются электрические стимулы.

Рис. 1. Потенциал действия нервной клетки.

Потенциал действия - быстрое колебание величины мембранного потенциала, вызванное действием на возбудимую клетку электрического или другого раздражителей.

На рис. 1 показан потенциал действия нервной клетки, записанный с помощью микроэлектрода. Если к клетке прикладывают кратковременный электрический стимул, мембранный потенциал уменьшается быстро до нуля. Это отклонение характеризуют как фазу деполяризаци и. В течение короткого времени внутренняя среда клетки становится электроположительна по отношению к наружней (фаза реверсии мембранного потенциала, или овершут ). Затем мембранный потенциал возвращается к уровню мембранного потенциала покоя (этап реполяризации ) (рис.2.).

Рис. 2. Фазы потенциала действия

Длительность потенциала действия составляет от 0,5 до 1 миллисекунды в больших нервных клетках и несколько миллисекунд в клетках скелетных мышц. Общая амплитуда - почти 100 - 120мВ , отклонение от нулевой линии - около 30-50мВ .

Потенциал действия играет ведущую роль в обработке информации в нервной системе. Он имеет постоянную амплитуду, которая не является вероятностной величиной. Это имеет большое значение в обработке информации нервной системой. Кодирование интенсивности раздражения осуществляется числом потенциалов действия и частотой, с которой потенциалы действия следуют друг за другом.

Биофизические основы потенциала действия

Потенциал действия возникает из-за специфических изменений ионной проницаемости в плазматической мембране. Английский физиолог Ходжкин показал, что основной механизм потенциала действия состоит в кратковременном и очень специфическом изменении проницаемости мембраны для ионов натрия. Ионы натрия при этом поступают в клетку до момента, пока мембранный потенциал не достигнет потенциала электрохимического равновесия ионов натрия.

Рис. 3. Изменение проницаемости мембраны для ионов натрия и калия во время потенциала действия

Проницаемость мембраны для натрия при действии на клетку электрического стимула возрастает приблизительно в 500 раз и становится значительно больше, чем проницаемость мембраны для ионов калия. В клетке резко повышается концентрация ионов натрия. В результате мембранный потенциал принимает положительное значение, и поток ионов натрия в клетку замедляется.

Во время возникновения потенциала действия происходит деполяризация плазматической мембраны. Быстрая деполяризация мембраны под действием электрического стимула вызывает увеличение её проницаемости для ионов натрия. Возросшее поступление ионов натрия в клетку усиливает деполяризацию мембраны, что, в свою очередь, вызывает дальнейшее увеличение проницаемости мембраны для натрия и т.д.

Но величина мембранного потенциала при деполяризации не достигает уровня потенциала электрохимического равновесия ионов натрия. Причиной этому является снижение проницаемости мембраны для ионов натрия из-за инактивации натриевого трансмембранного переноса. Этот процесс резко уменьшает проницаемость мембраны для ионов натрия и останавливает наплыв натрия в клетку.

В этот момент происходит увеличение проницаемости мембраны для ионов калия, что приводит к быстрому снижению величины мембранного потенциала к уровню потенциала покоя. Проницаемость мембраны для ионов калия также снижается до своего нормального значения. Таким образом, инактивация входящего натриевого тока и повышение проницаемости мембраны для ионов калия (выходящий ток) ограничивают длительность потенциала действия и приводят к реполяризации мембраны.

Таким образом, в течение потенциала действия некоторое количество ионов натрия поступают в клетку. Но это количество достаточно небольшое. Изменение концентрации ионов в больших нервных клетках составляет лишь около 1/300000 начальной величины.

Основной механизм изменений проницаемости мембраны обусловлен событиями в натриевых и калиевых каналах мембраны. Состояние их ворот управляется величиной мембранного потенциала. Натриевые каналы имеют два типа ворот. Один из них, называемые активационными воротами закрыты в состоянии покоя и открываются при деполяризации мембраны. Поступление ионов натрия в клетку вызывает открытие всё большего числа активационных ворот. Второй тип ворот натриевых каналов - инактивационные при усиливающейся деполяризации мембраны постепенно закрываются, что останавливает приток натрия в клетку. Деполяризация мембраны также служит причиной открытия дополнительного числа калиевых каналов, в результате чего увеличивается проницаемость мембраны для ионов калия и происходит реполяризация мембраны.

Рис. 4. Изменение состояния натриевых и калиевых каналов мембраны в зависимости от величины мембранного потенциала

Распространение потенциала действия

Потенциал действия распространяется вдоль мембраны нервной и мышечной клеток без уменьшения амплитуды с расстоянием. Этот процесс обусловлен кабельными свойствами плазматической мембраны, т.е. способностью проводить электрический ток на небольшие расстояния. Локальный электрический ток течет в клетку в активной области (где возникает потенциал действия) и из клетки - в смежной неактивной зоне. Эти ионные токи вызывают некоторые изменения мембранного потенциала в зоне, прилегающей к месту возникновения потенциала действия.

Циклический локальный ток снижает заряд мембраны в неактивной зоне и деполяризует её. Если деполяризация достигает порогового уровня, то возрастает проницаемость мембраны для ионов натрия и возникает потенциал действия. Таким образом потенциал действия распространяется вдоль нервных и мышечных волокон с постоянной скоростью.

Рис. 5. Распространение потенциала действия вдоль мембраны нервного волокна

Скорость распространения потенциала действия в нервных волокнах зависит от их диаметра. Она максимальна в наиболее толстых волокнах, достигая около 100 метров в секунду.

ПП – это разность электрических потенциалов между наружной и внутренней стороной.

ПП играет важную роль в жизнедеятельности самого нейрона и организма в целом. Он составляет основу для переработки информации в нервной клетке, обеспечивает регуляцию деятельности внутренних органов и опорно-двигательного аппарата посредствам запуска процессов возбуждения и сокращения в мышце.

Причины формирования ПП является неодинаковая концентрация анионов и катионов внутри и вне клетке.

Механизм формирования:

Как только в клетке появляется хоть немного Na + начинает действовать калиево-натриевый насос. Насос начинает менять собственный внутренний Na + на наружный К + . Из-за этого в клетке оказывается недостаток Na + , а сама клетка становится переполненной ионами калия. К + начинает выходить из клетки, т. К. там его переизбыток. При этом в клетке анионов оказывается больше чем катионов и клетка становится отрицательно заряженной.

13. Характеристика потенциала действия и механизм его возникновения.

ПД – это электрический процесс, выражающийся в колебании мембранного потенциала в результате перемещения ионов в клетку и из клетки.

Обеспечивает передачу сигналов между нервными клетками, между нервными центрами и рабочими органами.

В составе ПД выделяют три фазы:

1. Деполяризация (т.е. исчезновение заряда клетки – уменьшение мембранного потенциала до нуля)

2. Инверсия (изменение заряда клетки на обратный, когда внутренняя сторона мембраны клетки заряжается положительно, а внешняя – отрицательно)

3. Реполяризация (восстановление исходного заряда клетки, когда внутренняя поверхность клеточной мембраны снова заряжается отрицательно, а наружная – положительно)

Механизм возникновения ПД : если действие раздражителя на клеточную мембрану приводит к возникновению ПД, далее сам процесс развития ПД вызывает фазовые изменения проницаемости клеточной мембраны, что обеспечивает быстрое движение иона Na+в клетку, а иона K+ - из клетки.

14. Синаптическая передача в цнс. Свойства синапсов.

Синапс – место контакта нервной клетки с другим нейроном.

1.По механизму передачи:

а. Электрические. В них возбуждение передается посредством электрического поля. Поэтому оно может передаваться в обе стороны. Их в ЦНС мало.

б. Химические. Возбуждение через них передается с помощью ФАВ – нейромедиатора. Их в ЦНС большинство.

в. Смешанные.

2.По локализации:

а. Аксонодендритные

б. Аксосомтические (аксон+клетка)

в. Аксоаксонные

г. Дендросоматические (дендрит+клетка)

д. Дендродендритные

3. По эффекту:

а. Возбуждающие (запускающие генерацию ПД)

б. Тормозящие (препятствующие возникновению ПД)

Синапс состоит из:

    Пресинаптическое окончание (окончание аксона);

    Синаптическая щель;

    Постсинаптическая часть (окончание дендрита);

Посредством синапса осуществляются трофические влияния, приводящие к изменению метаболизма иннервируемой клетки, ее структуры и функции.

Свойства синапсов:

Отсутствие прочной связи между аксоном и дендритом;

Низкая лабильность;

Повышенная дисфункциональность;

Трансформация ритма возбуждения;

Механизмом передачи возбуждения;

Односторонность проведения возбуждения;

Высокая чувствительность к лекарствам и ядам;

А. Характеристика ПД. ПД - электрический процесс, выражаю­щийся в быстром колебании мембранного потенциала вследствие пе­ремещения ионов в клетку и т клетки и способный распространять­ся без затухания (без декремента). Он обеспечивает передачу сигна­лов между нервными клетками, между нервными центрами и рабочими органами, в мышцах - процесс электромеханического сопряжения (рис. 3.3, а).

Величина ПД нейрона колеблется в пределах 80-110 мВ, дли­тельность пика ПД нервного волокна составляет 0,5-1 мс. Ампли­туда ПД не зависит от силы раздражения, она всегда максимальна для данной клетки в конкретных условиях: ПД подчиняется закону «все или ничего», но не подчиняется закону силовых отношений -закону силы. ПД либо совсем не возникает на раздражение клетки, если оно мало, либо он максимальной величины, если раздражение является пороговым или сверхпороговым. Следует отметить, что слабое (подпороговое) раздражение может вызвать локальный потенциал. Он подчиняется закону силы: с увеличением силы стимула величина его возрастает (подробнее см. раздел 3.6). В составе ПД различают три фазы: 1 фаза - деполяризация, т.е. исчезновение заряда клетки - уменьшение мембранного потен­циала до нуля; 2 фаза - инверсия, изменение заряда клетки на об­ратный, когда внутренняя сторона мембраны клетки заряжается положительно, а внешняя - отрицательно (от лат. туегзю - перево­рачивание); 3 фаза - реполяризация, восстановление исходного за­ряда клетки, когда внутренняя поверхность клеточной мембраны снова заряжается отрицательно, а наружная - положительно.

Б. Механизм возникновения ПД. Если действие раздражителя на клеточную мембрану приводит к возникновению ПД, далее сам процесс развития ПД вызывают фазовые изменения прони­цаемости клеточной мембраны, что обеспечивает быстрое движе­ние иона Ка + в клетку, а иона К + - из клетки. Величина мембранного потенциала при этом сначала уменьшается, а затем снова восстанавливается до исходного уровня. На экране осциллографа отмеченные изменения мембранного потенциала предстают в ви­де пикового потенциала - ПД. Он возникает вследствие накоп­ленных и поддерживаемых ионными насосами градиентов кон­центраций ионов внутри и вне клетки, т.е. за счет потенциальной энергии в виде электрохимических градиентов разных ионов. Ес­ли заблокировать процесс выработки энергии, то ПД некоторый период времени будут возникать, но после исчезновения градиен­тов концентраций ионов (устранение потенциальной энергии) клетка генерировать ПД не будет. Рассмотрим фазы ПД.



Рис. 3.3. Схема, отражающая процесс возбуждения. а - потенциал действия, его фазы: 1 - деполяризация, 2 - инверсия (овершут), 3 - реполяризация, 4 - следовая гиперполяризация; б - натриевые ворота; (Ь-1 - в состоянии покоя клетки); в - калиевые ворота (1 - в состоянии покоя клетки). Знаки плюс (+) и минус (-) - знаки заряда внутри и вне клетки в различные фазы ПД. (См. пояснения в тексте.) Существует много различных названий фаз ПД (единого мнения не сложилось): 1) ме­стное возбуждение - пик ПД - следовые потенциалы; 2) фаза нарастания - фаза спада -следовые потенциалы; 3) деполяризация - овершут (перехлест, превышение, перелет), причем эта фаза в свою очередь делится на две част: восходящая (инверсия, ОТ лат. шуегяю - переворачивание) н нисходящая (реверсия, от лат. геуегзю - возврат) - реполя-рнзапия. Имеются и другие названия.

Отметим одно противоречие: термины «реполяризация» и «реверсия» но смыслу одинаковы - возврат к предыдущему состоя­нию, но эти состояния различны: в одном случае заряд исчезает (реверсия), в другом -восстанавливается (реполяршация). Наиболее корректны тс названия фаз ПД, в которых заложена общая идея, например изменение заряда клетки. В этой связи обоснованно ис­пользовать следующие названия фаз ПД: !) фаза деполяризации - процесс исчезновения заряда клетки до нуля; 2) фаза инверсии - изменение заряда клетки на противоположный. т. е. весь период ПД, когда внутри клетки заряд положительный, а снаружи - отрицатель­ный; 3) фаза реполярпзацин - восстановление заряда клетки до исходной величины (возврат к потенциалу покоя).

1. Фаза деполяризации (см. рис. 3.3, а, 1). При действии депо­ляризующего раздражителя на клетку (медиатор, электрический ток) вначале уменьшение мембранного потенциала (частичная деполяризация) происходит без изменения проницаемости мем­браны для ионов. Когда деполяризация достигает примерно 50% пороговой величины (порогового потенциала), возрастает проницаемость ее мембраны для иона Ка + , причем в первый мо­мент сравнительно медленно. Естественно, что скорость входа ионов Ка* в клетку при этом невелика. В этот период, как и во время всей фазы деполяризации, движущей силой, обеспечи­вающей вход иона Na + в клетку, являются концентрационный и электрический градиенты. Напомним, что клетка внутри заря­жена отрицательно (разноименные заряды притягиваются друг к другу), а концентрация ионов Na+ вне клетки в 10-12 раз боль­ше, чем внутри клетки. При возбуждении нейрона повышается проницаемость его мембраны и для ионов Са+, но его ток в клетку значительно меньше, чем ионов Nа + . Условием, обеспе­чивающим вход иона Nа + в клетку и последующий выход иона К* из клетки, является увеличение проницаемости клеточной мембраны, которая определяется состоянием воротного меха­низма ионных Nа- и К-каналов. Длительность пребывания электроуправляемого канала в открытом состоянии носит вероятно­стный характер и зависит от величины мембранного потенциа­ла. Суммарный ток ионов в любой момент определяется числом открытых каналов клеточной мембраны. Воротный механизм ^-каналов расположен на внешней стороне клеточной мембра­ны (Na+ движется внутрь клетки), воротный механизм К-каналов -на внутренней (К + движется из клетки наружу).

Активация Nа- и К-каналов (открытие ворот) обеспечивается уменьшением мембранного потенциала, Когда деполяризация клетки достигает критической величины (E kp , критический уро­вень деполяризации - КУД), которая обычно составляет -50 мВ (возможны и другие величины), проницаемость мембраны для ионов Nа + резко возрастает - открывается большое число по-тенциалзависимых ворот Nа-каналов и ионы Nа + лавиной уст­ремляются в клетку. В результате интенсивного тока ионов Nа + внутрь клетки далее процесс деполяризации проходит очень бы­стро. Развивающаяся деполяризация клеточной мембраны вы­зывает дополнительное увеличение ее проницаемости и, естест­венно, проводимости ионов Na+ - открываются все новые и но­вые активационные т-ворота Nа-каналов, что придает току ионов Na* в клетку характер регенеративного процесса. В итоге ПП исчезает, становится равным нулю. Фаза деполяризации на этом заканчивается.

2. Фаза инверсии. После исчезновения ПП вход Nа+ в клетку про­должается (m - ворота Na-каналов еще открыты - h-2), поэтому число положительных ионов в клетке превосходит число отрицательных, заряд внутри клетки становится положительным, сна­ружи - отрицательным. Процесс перезарядки мембраны представ­ляет собой 2-ю фазу ПД - фазу инверсии (см. рис. 3.3, в, 2). Теперь электрический градиент препятствует входу Na+ внутрь клетки (положительные заряды отталкиваются друг от друга), прово­димость Na* снижается. Тем не менее некоторый период (доли миллисекунды) ионы Na + продолжают входить в клетку, об этом свидетельствует продолжающееся нарастание ПД. Это означает, что концентрационный градиент, обеспечивающий движение ионов Ка + в клетку, сильнее электрического, препят­ствующего входу ионов Nа* в клетку. Во время деполяризации мембраны увеличивается проницаемость ее и для ионов Са 2+ , они также идут в клетку, но в нервных клетках роль ионов Са 2+ в развитии ПД мала. Таким образом, вся восходящая часть пика ПД обеспечивается в основном входом ионов Nа* в клетку.

Примерно через 0,5-1 мс после начала деполяризации рост ПД прекращается вследствие закрытия ворот Ка-каналов (Ь-3) и открытия ворот К-каналов (в, 2), т.е. увеличения проницаемости для ионов К + . Поскольку ионы К + находятся преимущественно внутри клетки, они, согласно концентрационному градиенту, быстро выходят из клетки, вследствие чего в клетке уменьшается число положительно заряженных ионов. Заряд клетки начинает возвращаться к исходному уровню. В фазу инверсии выходу ио­нов К* из клетки способствует также электрический градиент. Ионы К* выталкиваются положительным зарядом из клетки ипритягиваются отрицательным зарядом снаружи клетки. Так продолжается до полного исчезновения положительного заряда внутри клетки - до конца фазы инверсии (см. рис. 3.3, а - пунк­тирная линия), когда начинается следующая фаза ПД - фаза реполяризации. Калий выходит из клетки не только по управляе­мым каналам, ворота которых открыты, но и по неуправляемым каналам утечки.

Амплитуда ПД складывается из величины ПП (мембранный потенциал покоящейся клетки) и величины фазы инверсии - око­ло 20 мв. Если мембранный потенциал в состоянии покоя клетки мал, то амплитуда ПД этой клетки будет небольшой.

3. Фаза реполяризации. В этой фазе проницаемость клеточной мембраны для ионов К + все еще высока, ионы К + продолжают быстро выходить из клетки согласно концентрационному гради­енту. Клетка снова внутри имеет отрицательный заряд, а снару­жи - положительный (см. рис. 3.3, а, 3), поэтому электрический градиент препятствует выходу К* из клетки, что снижает его проводимость, хотя он продолжает выходить. Это объясняется тем, что действие концентрационного градиента выражено зна­чительно сильнее действия электрического градиента. Таким образом, вся нисходящая часть пика ПД обусловлена выходом иона К + из клетки. Нередко в конце ПД наблюдается замедление реполяризации, что объясняется уменьшением проницаемости клеточной мембраны для ионов К + и замедлением выхода их из клетки вследствие закрытия ворот К-каналов. Другая причина замедления тока ионов К + связана с возрастанием положитель­ного потенциала наружной поверхности клетки и формировани­ем противоположно направленного электрического градиента.

Главную роль в возникновении ПД играет ион Na*, входящий в клетку при повышении проницаемости клеточной мембраны и обеспечивающий всю восходящую часть пика ПД. При замене иона Nа + в среде на другой ион, например холин, или в случае блокировки Na-каналов тетродотоксином, ПД в нервной клетке не возникает. Однако проницаемость мембраны для иона К + то­же играет важную роль. Если повышение проницаемости для иона К + предотвратить тетраэтиламмонием, то мембрана после ее деполяризации реполяризуется гораздо медленнее, только за счет медленных неуправляемых каналов (каналы утечки ионов), через которые К + будет выходить из клетки.

Роль ионов Са 2+ в возникновении ПД в нервных клетках не­значительна, в некоторых нейронах она существенна, например в дендритах клеток Пуркинье мозжечка.

В. Следовые явления в процессе возбуждения клетки. Эти явле­ния выражаются в гиперполяризации или частичной деполяризации клетки после возвращения мембранного потенциала к исход­ной величине (рис. 3.4).

Следовая гиперполяризация клеточной мембраны обычно яв­ляется следствием еще сохраняющейся повышенной проницае­мости клеточной мембраны для К + . Ворота К-каналов еще не полностью закрыты, поэтому К + продолжает выходить из клет­ки согласно концентрационному градиенту, что и ведет к гипер­поляризации клеточной мембраны. Постепенно проницаемость клеточной мембраны возвращается к исходной (натриевые и ка­лиевые ворота возвращаются в исходное состояние), а мембран­ный потенциал становится таким же, каким он был до возбуж­дения клетки. Ионные помпы непосредственно за фазы потенциа­ла действия не отвечают, ионы перемещаются с огромной скоростью согласно концентрационному и частично электриче­скому градиентам.

Следовая деполяризация также характерна для нейронов. Ме­ханизм ее изучен недостаточно. Возможно, она обусловлена крат­ковременным повышением проницаемости клеточной мембраны для Ка* и входом его в клетку согласно концентрационному и электрическому градиентам.

Наиболее растпространенный метод изучения функций ионных каналов - метод фиксации напряжения (voltage-clamp). Мем­бранный потенциал с помощью подачи электрического напря­жения изменяют и фиксируют на определенном уровне, затем клеточную мембрану градуально деполяризуют, что ведет к от­крытию ионных каналов и возникновению ионного тока, кото­рый мог бы деполяризовать клетку. При этом пропускают элек­трический ток, равный по величине, но противоположный по знаку ионному току, поэтому трансмембранная разность потен­циалов не изменяется. Это позволяет изучить величину ионного тока через мембрану. Применение различных блокаторов ион­ных каналов дает дополнительную возможность более глубоко изучить свойства каналов.

Количественное соотношение между ионными токами по отдельным каналам в покоящейся клетке и во время ПД и их кинетику можно выяснить с помощью метода локальной фик­сации потенциала (patch-clamp). К мембране подводят микро­электрод - присоску (внутри его создается разрежение) и, если на этом участке оказывается канал, исследуют ионный ток че­рез него. В остальном методика подобна предыдущей. И в этом случае применяют специфические блокаторы каналов. В част­ности, при подаче на мембрану фиксированного деполяри­зующего потенциала было установлено, что через Ка-каналы может проходить и ион К + , но его ток в 10-12 раз меньше, а через К-каналы может проходить ион Ма + , его ток в 100 раз меньше, чем ток ионов К + .

Запас ионов в клетке, обеспечивающий возникновение возбу­ждения (ПД), огромен. Концентрационные градиенты ионов в результате одного цикла возбуждения практически не изменя­ются. Клетка может возбуждаться до 5 * 10 5 раз без подзарядки, т.е. без работы Ма/К-насоса. Число импульсов, которое генери­рует и проводит нервное волокно, зависит от его толщины, что определяет запас ионов. Чем толще нервное волокно, тем боль­ше запас ионов, тем больше импульсов оно может генерировать (от нескольких сотен до миллиона) без участия Nа/К-насоса. Однако в тонких волокнах на возникновение одного ПД расходуется около 1% концентрационных градиентов ионов Nа + и К*. Если заблокировать выработку энергии, то клетка будет еще многократно возбуждаться. В реальной действительности Nа/К-насос постоянно переносит ионы Nа + из клетки, а ионы К + воз­вращает в клетку, в результате чего поддерживается концентра­ционный градиент Nа + и К + за счет непосредственного расхода энергии, источником которой является АТФ. Имеются данные, что увеличение внутриклеточной концентрации Nа + сопровож­дается повышением интенсивности работы Nа/К-насоса. Это может быть связано исключительно с тем, что для переносчика становится доступно большее количество внутриклеточных ио­нов Na + .

Мембранный потенциал покоя представляет собой электрический потенциал (запас), формирующийся между наружной поверхностью мембраны клетки и внутренней стороной Внутренняя сторона перепонки относительно наружной поверхности имеет всегда отрицательный заряд. Для клеток каждого вида потенциал покоя является величиной практически постоянной. Так, у теплокровных в волокнах скелетной мускулатуры она составляет 90 мВ, для клеток миокарда - 80, нервных клеток - 60-70. Мембранный потенциал присутствует во всех живых клетках.

В соответствии с современной теорией рассматриваемый электрический запас формируется в результате активного и пассивного передвижения ионов.

Пассивное движение происходит по для него не требуется затрат энергии. в состоянии покоя обладает большей проницаемостью для ионов калия. В цитоплазме нервных и мышечных клеток их (ионов калия) присутствует в тридцать-пятьдесят раз больше, нежели в межклеточной жидкости. В цитоплазме ионы находятся в свободном виде и диффундируют, в соответствии с градиентом концентрации, во внеклеточную жидкость сквозь мембрану. В межклеточной жидкости они удерживаются внутриклеточными анионами на внешней поверхности перепонки.

Во внутриклеточном пространстве содержатся в основном анионы пировиноградной, уксусной, аспарагиновой и прочих органических кислот. Неорганические же кислоты содержатся в относительно небольшом количестве. Сквозь мембрану анионы проникать не могут. Они остаются в клетке. Располагаются анионы на внутренней стороне мембраны.

В связи с тем, что у анионов заряд отрицательный, а у катионов - положительный, внешняя поверхность перепонки имеет заряд положительный, а внутренняя - отрицательный.

Во внеклеточной жидкости ионов натрия в восемь-десять раз больше, нежели в клетке. Их проницаемость незначительна. Однако за счет проникновения ионов натрия в некоторой степени уменьшается мембранный потенциал. При этом имеет место и диффузия ионов хлора внутрь клетки. Содержание этих ионов в пятнадцать-тридцать раз выше во внеклеточных жидкостях. За счет их проникновения мембранный потенциал несколько возрастает. Кроме того, в перепонке существует и особый молекулярный механизм. Он обеспечивает активное продвижение ионов калия и натрия в сторону повышенной концентрации. Таким образом поддерживается ионная асимметрия.

Под воздействием фермента аденозинтрифосфатазы происходит расщепление АТФ. Отравление цианидами, монойодацетатом, динитрофенолом и прочими веществами, в том числе прекращающими процессы синтеза и гликолиза АТФ, провоцирует его (АТФ) снижение в цитоплазме и прекращение функционирования "помпы".

Перепонка проницаема также и для ионов хлора (в особенности в волокнах мускулатуры). В клетках, обладающих высокой проницаемостью, ионы калия и хлора в равной степени формируют мембранный покой. При этом в прочих клетках вклад последних в указанный процесс незначителен.

2024 med103.ru. Я самая красивая. Мода и стиль. Разные хитрости. Уход за лицом.