В каких координатных осях строится петля гистерезиса. Что такое гистерезис, какие польза и вред от данного явления

ГИСТЕРЕЗИС (от греческого?στ?ρησις - отставание, запаздывание), запаздывание изменения физической величины, характеризующей состояние вещества, от изменения другой физической величины, определяющей внешние условия. Гистерезис имеет место в тех случаях, когда состояние тела в данный момент времени определяется внешними условиями не только в тот же, но и в предшествующие моменты времени. В результате для циклического процесса (рост и уменьшение внешнего воздействия) получается петлеобразная (неоднозначная) диаграмма, которая называется петлёй гистерезиса. Возникает гистерезис в различных веществах и при разных физических процессах. Наибольший интерес представляют магнитный, сегнетоэлектрический и упругий гистерезис.

Магнитный гистерезис - неоднозначная зависимость намагниченности М магнитоупорядоченного вещества (магнетика, например, ферро- или ферримагнетика) от внешнего магнитного поля Н при его циклическом изменении (увеличении и уменьшении). Причиной существования магнитного гистерезиса является наличие в определённом интервале изменения Н среди состояний магнетика, отвечающих минимуму термодинамического потенциала, метастабильных состояний (наряду со стабильными) и необратимых переходов между ними. Магнитный гистерезис можно также рассматривать как проявление магнитных ориентационных фазовых переходов 1-го рода, для которых прямой и обратный переходы между фазами в зависимости от Н происходят, в силу указанной метастабильности состояний, при различных значениях Н.

На рисунке 1 схематически показана типичная зависимость М от Н в ферромагнетике; из состояния М = 0 при Н = 0 с увеличением Н значение М растёт (основная кривая намагничивания, а) и в достаточно сильном поле Н ≥ H m М становится практически постоянной и равной намагниченности насыщения M s . При уменьшении Н от значения Н m намагниченность изменяется вдоль ветви б и при Н = 0 принимает значение М = M R (остаточная намагниченность). Для размагничивания вещества (М = 0) необходимо приложить обратное поле Н = -Н с, называемое коэрцитивной силой. Далее при Н = -Н m образец намагничивается до насыщения (М = -M s) в обратном направлении. При изменении Н от -Н m до +Н m намагниченность изменяется вдоль кривой в. Ветви б и в, получающиеся при изменении Н от +Н m до -H m и обратно, образуют замкнутую кривую, называемую максимальной (или предельной) петлёй гистерезиса. Ветви б и в называются, соответственно, нисходящей и восходящей ветвями петли гистерезиса. При изменении Н на отрезке [-Н 1 , Н 1 ] с Н 1 <Н m зависимость М(Н) описывается замкнутой кривой (частной петлёй гистерезиса), целиком лежащей внутри максимальной петли гистерезиса.

Описанные петли гистерезиса характерны для достаточно медленных (квазистатических) процессов перемагничивания. Отставание М от Н при намагничивании и размагничивании приводит к тому, что энергия, приобретаемая магнетиком при намагничивании, не полностью отдаётся при размагничивании. Теряемая за один цикл энергия определяется площадью петли гистерезиса. Эти потери энергии называются гистерезисными. При динамическом перемагничивании образца переменным магнитным полем Н~ петля гистерезиса оказывается шире статической вследствие того, что к квазиравновесным гистерезисным потерям добавляются динамические, которые могут быть связаны с вихревыми токами (в проводниках) и релаксационными явлениями.

Форма петли гистерезиса и наиболее важные характеристики магнитного гистерезиса (гистерезисные потери, Н с, M R и др.) зависят от химического состава вещества, его структурного состояния и температуры, от характера и распределения дефектов в образце, а следовательно, от технологии его приготовления и последующих физических обработок (тепловой, механической, термомагнитной и др.). С магнитным гистерезисом связано гистерезисное поведение целого ряда других физических свойств, например гистерезис магнитострикции, гистерезис гальваномагнитных и магнитооптических явлений и так далее.

Сегнетоэлектрический гистерезис - неоднозначная зависимость величины вектора электрической поляризации Р сегнетоэлектриков от напряжённости Е внешнего электрического поля при циклическом изменении последнего. Сегнетоэлектрики обладают в определённом температурном интервале спонтанной (т. е. самопроизвольной, возникающей в отсутствие внешнего поля) поляризацией Р сп. Направление поляризации может быть изменено электрическим полем, при этом значение Р при данном Е зависит от предыстории, т. е. от того, каким было электрическое поле в предшествующие моменты времени. Сегнетоэлектрический гистерезис имеет вид характерной петли (петля гистерезиса), основными параметрами которой являются остаточная поляризация Р ост при Е= 0 и коэрцитивное поле Е к, при котором происходит изменение направления (переключение) вектора Р сп. Для совершенных монокристаллов петля гистерезиса имеет форму, близкую к прямоугольной, и Р ОСТ = Р СП. В реальных кристаллах остаточная поляризация меньше спонтанной из-за разбиения кристалла на домены.

Существование сегнетоэлектрического гистерезиса следует из феноменологической теории сегнетоэлектрических явлений, в соответствии с которой равновесным значениям Р сп при любой температуре ниже температуры сегнетоэлектрического фазового перехода отвечают два симметричных минимума термодинамического потенциала, разделённые потенциальным барьером. При Е= + Е к один из минимумов исчезает, и кристалл оказывается в состоянии с определённым направлением вектора Р сп. При циклическом переключении спонтанной поляризации площадь петли гистерезиса определяет гистерезисные потери - количество энергии электрического поля, переходящей в теплоту. Величина коэрцитивного поля связана также с процессами зарождения и эволюции в электрическом поле сегнетоэлектрических доменов - областей кристалла с выделенным электрическим полем направлением вектора спонтанной поляризации.

Упругий гистерезис - неоднозначная зависимость механического напряжения от деформации упругого тела при циклическом приложении и снятии нагрузки. График зависимости напряжения σ от деформации ε отличается от отрезка прямой линии, соответствующей закону Гука, и представляет собой петлю гистерезиса (рис. 2).

Площадь этой петли пропорциональна механической энергии, которая рассеялась (превратилась в теплоту) во время цикла.

Появление упругого гистерезиса в металлах связано с тем, что в некоторых зёрнах поликристалла микронапряжения существенно превышают средние напряжения в образце, что приводит к появлению пластических деформаций и тем самым к рассеянию механической энергии. В некоторых случаях вклад в упругий гистерезис дают электромагнитные явления.

Упругий гистерезис как проявление отличия реального упругого тела от идеально упругого наблюдается у всех твёрдых тел, даже при весьма низких температурах. Упругий гистерезис является причиной затухания свободных колебаний упругих тел, затухания в них звука, уменьшения коэффициента восстановления при неупругом ударе и др. В общем случае отклонение упругости от идеальной включается в понятие внутреннего трения.

Лит.: Ильюшин А. А., Ленский В. С. Сопротивление материалов. М., 1959; Постников В. С. Внутреннее трение в металлах. 2-е изд. М., 1974. Вонсовский С. В. Магнетизм. М., 1984; Филиппов Б. Н., Танкеев А. П. Динамические эффекты в ферромагнетиках с доменной структурой. М., 1987; Струков Б. А., Леванюк А. П. Физические основы сегнетоэлектрических явлений в кристаллах. М., 1995.

Б. Н. Филиппов, Б. А. Струков, В. Н. Кузнецов.

Гистерезис (от греч. hysteresis - отставание, запаздывание), явление, которое состоит в том, что физическая величина, характеризующая состояние тела (например, намагниченность), неоднозначно зависит от физические величины, характеризующей внешние условия (например, магнитного поля). Г. наблюдается в тех случаях, когда состояние тела в данный момент времени определяется внешними условиями не только в тот же, но и в предшествующие моменты времени. Неоднозначная зависимость величин наблюдается в любых процессах, т.к. для изменения состояния тела всегда требуется определённое время (время релаксации) и реакция тела отстаёт от вызывающих её причин. Такое отставание тем меньше, чем медленнее изменяются внешние условия Однако для некоторых процессов отставание при замедлении изменения внешних условий не уменьшается. В этих случаях неоднозначную зависимость величин называется гистерезисной, а само явление - Г.

Г. наблюдается в различных веществах и при разных физических процессах. Наибольший интерес представляют: магнитный Г., диэлектрический Г. и упругий Г.

Магнитный Г. наблюдается в магнитных материалах, например в ферромагнетиках. Основной особенностью ферромагнетиков является наличие спонтанной (самопроизвольной) намагниченности. Обычно ферромагнетик намагничен не однородно, а разбит на домены - области однородной спонтанной намагниченности, у которых величина намагниченности (магнитного момента единицы объема) одинакова, а направления различны. Под действием внешнего магнитного поля число и размеры доменов, намагниченных по полю, увеличиваются за счёт др. доменов. Кроме того, магнитные моменты отдельных доменов могут поворачиваться по полю. В результате магнитный момент образца увеличивается.

На рис. 1 изображена зависимость магнитного момента М ферромагнитного образца от напряжённости Н внешнего магнитного поля (кривая намагничивания). В достаточно сильном магнитном поле образец намагничивается до насыщения (при дальнейшем увеличении поля значение М практически не изменяется, точка А). При этом образец состоит из одного домена с магнитным моментом насыщения M s , направленным по полю. При уменьшении напряжённости внешнего магнитного поля Н магнитный момент образца М будет уменьшаться по кривой I преимущественно за счёт возникновения и роста доменов с магнитным моментом, направленным против поля. Рост доменов обусловлен движением доменных стенок. Это движение затруднено из-за наличия в образце различных дефектов (примесей, неоднородностей и т.п.), которые закрепляют доменные стенки в некоторых положениях; требуются достаточно сильные магнитные поля для того, чтобы их сдвинуть. Поэтому при уменьшении поля Н до нуля у образца сохраняется т. н. остаточный магнитный момент M r (точка В).

Образец полностью размагничивается лишь в достаточно сильном поле противоположного направления, называемом коэрцитивным полем (коэрцитивной силой) Н с (точка С). При дальнейшем увеличении магнитного поля обратного направления образец вновь намагничивается вдоль поля до насыщения (точка D). Перемагничивание образца (из точки D в точку А) происходит по кривой II. Т. о., при циклическом изменении поля кривая, характеризующая изменение магнитного момента образца, образует петлю магнитного Г. Если поле Н циклически изменять в таких пределах, что намагниченность насыщения не достигается, то получается непредельная петля магнитного Г. (кривая III). Уменьшая амплитуду изменения поля Н до нуля, можно образец полностью размагнитить (прийти в точку О). Намагничивание образца из точки О происходит по кривой IV.

При магнитном Г. одному и тому же значению напряжённости внешнего магнитного поля Н соответствуют разные значения магнитного момента М. Эта неоднозначность обусловлена влиянием состояний образца, предшествующих данному (т. е. магнитной предысторией образца).

Вид и размеры петли магнитного Г., величина Н с в различных ферромагнетиках могут меняться в широких пределах. Например, в чистом железе Нс= 1 э, в сплаве магнико Нс= 580 э. На петлю магнитного Г. сильно влияет обработка материала, при которой изменяется число дефектов (рис. 2).

Площадь петли магнитного Г. равна энергии, теряемой в образце за один цикл изменения поля. Эта энергия идёт, в конечном счёте, на нагревание образца. Такие потери энергии называются гистерезисными. В тех случаях, когда потери на Г. нежелательны (например, в сердечниках трансформаторов, в статорах и роторах электрических машин), применяют магнитномягкие материалы, обладающие малым Нс и малой площадью петли Г. Для изготовления постоянных магнитов, напротив, требуются магнитножёсткие материалы с большим Нс.

С ростом частоты переменного магнитного поля (числа циклов перемагничивания в единицу времени) к гистерезисным потерям добавляются др. потери, связанные с вихревыми токами и магнитной вязкостью. Соответственно площадь петли Г. при высоких частотах увеличивается. Такую петлю иногда называют динамической петлей, в отличие от описанной выше статической петли.

От магнитного момента зависят многие др. свойства ферромагнетика, например электрическое сопротивление, механическая деформация. Изменение магнитного момента вызывает изменение и этих свойств. Соответственно наблюдается, например, гальваномагнитный Г., магнитострикционный Г.

Диэлектрический Г. наблюдается обычно в сегнетоэлектриках, например титанате бария. Зависимость поляризации Р от напряжённости электрического поля Е в сегнетоэлектриках (рис. 3) подобна зависимости М от Н в ферромагнетиках и объясняется наличием спонтанной электрической поляризации, электрических доменов и трудностью перестройки доменной структуры. Гистерезисные потери составляют большую часть диэлектрических потерь в сегнетоэлектриках.

Поскольку с поляризацией связаны др. характеристики сегнетоэлектриков, например деформация, то с диэлектрическим Г. связаны др. виды Г., например пьезоэлектрический Г. (рис. 4), Г. электрооптического эффекта. В некоторых случаях наблюдаются двойные петли диэлектрического Г. (рис. 5). Это объясняется тем, что под влиянием электрического поля в образце происходит фазовый переход с перестройкой кристаллической структуры. Такого рода диэлектрический Г. тесно связан с Г. при фазовых переходах.

Упругий Г., т. е. гистерезисная зависимость деформации и от механического напряжения s, наблюдается в любых реальных материалах при достаточно больших напряжениях (рис. 6). Упругий Г. возникает всякий раз, когда имеет место пластическая (неупругая) деформация (см. Пластичность). Пластическая деформация обусловлена перемещением дефектов, например дислокаций, всегда присутствующих в реальных материалах. Примеси, включения и др. дефекты, а также сама кристаллическая решётка стремятся удержать дислокацию в определенных положениях в кристалле. Поэтому требуются напряжения достаточной величины, чтобы сдвинуть дислокацию. Механическая обработка и введение примесей приводят к закреплению дислокаций, в результате чего происходит упрочнение материала, пластическая деформация и упругий Г. наблюдаются при больших напряжениях. Энергия, теряемая в образце за один цикл, идёт в конечном счёте на нагревание образца. Потери на упругий Г. дают вклад во внутреннее трение. В случае упругих деформаций, помимо гистерезисных, есть и др. потери, например обусловленные вязкостью. Величина этих потерь, в отличие от гистерезисных, зависит от частоты изменения s (или и). Иногда понятие "упругий Г." употребляется шире - говорят о динамической петле упругого Г., включающей все потери на данной частоте.

Лит.: Киренский Л. В., Магнетизм, 2 изд., М., 1967; Вонсовский С. В., Современное учение о магнетизме, М. - Л., 1952; Бозорт Р., Ферромагнетизм, пер. с англ., М., 1956; Иона Ф., Ширане Д., Сегнетоэлектрические кристаллы, пер. с англ., М., 1965; Постников В. С., Внутреннее трение в металлах, М., 1969; Физический энциклопедический словарь, т. 1, М., 1960.

А. П. Леванюк, Д. Г. Санников.

Биологические и физические системы способны мгновенно откликаться на приложенное к ним воздействие. Если рассмотреть это явление на временной оси координат, то становится заметно, что отклик зависит от предыстории системы и ее текущего состояния. График, который наглядно демонстрирует это свойство систем, получил название петли гистерезиса, которая отличается остроугольной формой.

Оригинальная форма петли обусловлена эффектом насыщения и неравномерностью траектории между соседними расстояниями. Эффект гистерезиса имеет кардинальные отличия от инерционности, с которой его часто путают, забывая о том, что монотонное сопротивление существенно отличается от мгновенного сопротивления на воздействие.

Петля гистерезиса является циклом, в ходе которого часть свойств системы используются независимо от воздействий, а часть – отправляется на повторную проверку.

Явление гистерезиса в физике

В физике наиболее часто системы сталкиваются со следующими видами гистерезиса:

  • Магнитный – отражает зависимость между векторами напряжения магнитного поля и намагничивания в веществе. Это явление объясняет существование постоянных магнитов.
  • Сепнгетоэлектрический – зависимость между поляризацией сегнетоэлектриков и изменения внешнего электрического поля.
  • Упругий – зависимость деформации упругих материалов от воздействия высоких давлений. Это явление лежит в основе великолепных механических характеристик изделий из кованого метала.

Упругий гистерезис встречается двух основных видов – статический и динамический. В первом случае петля будет равномерной, во втором – постоянно меняющейся.

Применение гистерезиса в электронике

В электротехнике широко применяются устройства, в основе которых лежат магнитные взаимодействия. Наиболее распространение получили магнитные носители данных. Понимание гистерезиса необходимо для подавления в них шумов, таких как быстрые колебания или дребезжание контактов.

В большинстве электронных приборов наблюдается явление теплового гистерезиса. В процессе работы устройства нагреваются, а после охлаждения ряд характеристик уже не могут принять первоначальные явления.

Так, в процессе нагрева происходит расширение микросхем и печатных плат, полупроводниковых кристаллов. В результате развивается механическое напряжение, воздействие которого на элементы системы сохраняется после остывания. Особенно ярко тепловой гистерезис проявляется в высокоточных источниках опорного напряжения.

Различные ферромагнитные материалы обладают неодинаковой способностью проводить магнитный поток. Основной характеристикой ферромагнитного материала является петля магнитного гистерезиса В(Н) . Эта зависимость определяет значение магнитной индукции, которая будет возбуждена в магнитопроводе из данного материала при воздействии некоторой напряженности поля.

Рассмотрим процесс перемагничивания ферромагнетика. Пусть первоначально он был полностью размагничен. Сначала индукция быстро возрастает за счет того, что магнитные диполи ориентируются по силовым линиям поля, добавляя свой магнитный поток к внешнему. Затем ее рост замедляется по мере того, как количество неориентированных диполей уменьшается и, наконец, когда практически все они ориентируются по внешнему полю рост индукции прекращается и наступает режим насыщения.

Если процесс циклического перемагничивания повторять при разных амплитудных значениях тока (Н ), то получим семейство петель магнитного гистерезиса. При некотором максимальном значении тока, а значит Н max , площадь петли гистерезиса практически не увеличивается. Наибольшая по площади петля называется предельной петлей гистерезиса.

Кривая, соединяющая вершины петель - на рисунке жирная линия, называется основной кривой намагничивания.

После нескольких (около 10) циклов изменения напряженности от положительного до отрицательного максимальных значений зависимость B =f (H ) начнет повторяться и приобретет характерный вид симметричной замкнутой кривой, называемой петлей гистерезиса . Гистерезисом называют отставание изменения индукции от напряженности магнитного поля .

Симметричная петля гистерезиса, полученная при максимальной напряженности поля H m , соответствующей насыщению ферромагнетика, называется предельным циклом .

Для предельного цикла устанавливают также значения индукции B r при H = 0, которое называется остаточной индукцией , и значение H c при B = 0, называемое коэрцитивной силой . Коэрцитивная (удерживающая) сила показывает, какую напряженность внешнего поля следует приложить к веществу, чтобы уменьшить остаточную индукцию до нуля.

Форма и характерные точки предельного цикла определяют свойства ферромагнетика. Вещества с большой остаточной индукцией, коэрцитивной силой и площадью петли гистерезиса (кривая 1 рис.8а) называются магнитнотвердыми .

Они используются для изготовления постоянных магнитов. Вещества с малой остаточной индукцией и площадью петли гистерезиса (кривая 2 рис.8а) называются магнитномягкими и используются для изготовления магнитопроводов электротехнических устройств, в особенности работающих при периодически изменяющемся магнитном потоке.


Свойства ферромагнитных материалов в переменных магнитных полях

При возбуждении переменного магнитного потока в магнитопроводах электротехнических устройств происходит непрерывное циклическое перемагничивание ферромагнитного материала.

В каждый момент времени магнитное состояние материала определяется точкой В (Н ) на симметричной петле (рис. 9), по конфигурации похожей на петлю магнитного гистерезиса. Получаемая при быстрых перемагничиваниях петля называется динамической петлей , и она отличается от статической петли магнитного гистерезиса, получаемой при медленных перемагничиваниях. Динамическая петля (показана пунктиром) шире статической.

Гистерезис по определению, это свойство систем, которые не сразу следуют приложенным силам. Реакция этих систем зависит от сил, действовавших ранее, то есть системы зависят от собственной истории.

Рисунок 1. Классическая петля гистерезиса.

По пунктам:

  • казалось бы, что любая выявленная на широком интервале, аналитическая зависимость физических величин вида Y=f(X) при премещении из точки 0(условный ноль, для удобства) в точку 1 является хорошим описанием процесса
  • но, на самом деле, некоторые процессы всегда в одну сторону идут по одной кривой, а в другую по другой (сходясь в конечных точках) - напоминает ежедневный путь на работу и обратно верно?
  • эти явления и получили название явлений "классического гистерезиса" , к основным из которых относят:
    • магнитный гистерезис
    • сегнетоэлектрический гистерезис
    • упругий гистерезис
    • многие другие
  • мы же рассмотрим и явления классического гистерезиса и огромный класс явлений, которые, на первый взгляд, являются явлениями гистерезиса, но показывают совершенно самостоятельное поведение, назовем их "инженерный гистерезис"
  • подробные описания явлений классического гистерезиса широко доступны и не являются предметом рассмотрения

Что такое "инженерный гистерезис"? В отличие от классического гистерезиса "инженерный гистерезис" обусловлен не остаточными явлениями в системе при смене направления процесса, а резким изменением свойств системы в точках начала и конца процесса (например, при срабатывании автоматики, меняющем коммутацию/геометрию/логику и др. внутри системы).

Проиллюстрируем разницу. Рисунки 2 и 3 показывают полные кривые гистерезиса для классического и инженерного гистерезисов. При движении из точки 0 в точку 1 при отличий нет. Но!

Рассмотрим вопрос о том, как ведет себя система, обладающая гистерезисом по каким-то свойствам (характеристикам) в том случае, если процесс перемещения из точки начала процесса в точку конца будет прерван где-то посередине.

Обратите внимание! В классическом гистерезисе смена направления процесса образует новую петлю гистерезиса. В "инженерном гистерезисе" при недостижении крайних точек процесса ничего подобного не происходит. К чему это приведет?


Рисунок 4. Прерваный процесс на петле "инженерного гистерезиса".

  • Контрольный параметр Y для работы автоматики зависит от рабочего параметра Р, и на первый вид эта зависимость - гистерезис, хоть это и не так на самом деле
  • В зависимости от того, на каком из участков процесса находится рабочая точка сейчас эта зависимость носит различный характер
  • При аварии или обрыве питания, в зависимости от настроек работы системы "по умолчанию" для промежуточных точек между уровнями включения и выключения автоматики повторный запуск наверняка приведет к нештатным относительно контрольного параметра значениям рабочего параметра
  • Требуется определенное внимание инженера при перезапуске процесса к тому на каком из этапов процесса произошел сбой
  • Иногда требуются специальные решения для защиты логики системы от неверной интерпретации состояния системы
  • Проблема особенно характерна для систем с дискретным (релейным) регулированием, но не только для них
  • Данный процесс, строго говоря, вообще гистерезисом не является и употребление термина может вызывать недопонимание при общении с другими инженерами и, особенно, с инженерами-учеными
  • другое прочее
2024 med103.ru. Я самая красивая. Мода и стиль. Разные хитрости. Уход за лицом.