Собственные значения и собственные векторы оператора онлайн. Собственные векторы и собственные значения линейного оператора

Наиболее просто устроены матрицы диагонального вида . Возникает вопрос, нельзя ли найти базис, в котором матрица линейного оператора имела бы диагональный вид. Такой базис существует.
Пусть дано линейное пространство R n и действующий в нем линейный оператор A; в этом случае оператор A переводит R n в себя, то есть A:R n → R n .

Определение. Ненулевой вектор x называется собственным вектором оператора A , если оператор A переводит x в коллинеарный ему вектор, то есть . Число λ называется собственным значением или собственным числом оператора A, соответствующим собственному вектору x .
Отметим некоторые свойства собственных чисел и собственных векторов.
1. Любая линейная комбинация собственных векторов оператора A, отвечающих одному и тому же собственному числу λ, является собственным вектором с тем же собственным числом.
2. Собственные векторы оператора A с попарно различными собственными числами λ 1 , λ 2 , …, λ m линейно независимы.
3. Если собственные числа λ 1 =λ 2 = λ m = λ, то собственному числу λ соответствует не более m линейно независимых собственных векторов.

Итак, если имеется n линейно независимых собственных векторов , соответствующих различным собственным числам λ 1 , λ 2 , …, λ n , то они линейно независимы, следовательно, их можно принять за базис пространства R n . Найдем вид матрицы линейного оператора A в базисе из его собственных векторов, для чего подействуем оператором A на базисные векторы: тогда .
Таким образом, матрица линейного оператора A в базисе из его собственных векторов имеет диагональный вид, причем по диагонали стоят собственные числа оператора A.
Существует ли другой базис, в котором матрица имеет диагональный вид? Ответ на поставленный вопрос дает следующая теорема.

Теорема. Матрица линейного оператора A в базисе (i = 1..n) имеет диагональный вид тогда и только тогда, когда все векторы базиса - собственные векторы оператора A.

Правило отыскания собственных чисел и собственных векторов

Пусть дан вектор , где x 1 , x 2 , …, x n - координаты вектора x относительно базиса и x - собственный вектор линейного оператора A, соответствующий собственному числу λ , то есть . Это соотношение можно записать в матричной форме

. (*)


Уравнение (*) можно рассматривать как уравнение для отыскания x , причем , то есть нас интересуют нетривиальные решения, поскольку собственный вектор не может быть нулевым. Известно, что нетривиальные решения однородной системы линейных уравнений существуют тогда и только тогда, когда det(A - λE) = 0. Таким образом, для того, чтобы λ было собственным числом оператора A необходимо и достаточно, чтобы det(A - λE) = 0.
Если уравнение (*) расписать подробно в координатной форме, то получим систему линейных однородных уравнений:

(1)
где - матрица линейного оператора.

Система (1) имеет ненулевое решение, если ее определитель D равен нулю


Получили уравнение для нахождения собственных чисел.
Это уравнение называется характеристическим уравнением, а его левая часть - характеристическим многочленом матрицы (оператора) A. Если характеристический многочлен не имеет вещественных корней, то матрица A не имеет собственных векторов и ее нельзя привести к диагональному виду.
Пусть λ 1 , λ 2 , …, λ n - вещественные корни характеристического уравнения, причем среди них могут быть и кратные. Подставляя по очереди эти значения в систему (1), находим собственные векторы.

Пример 12. Линейный оператор A действует в R 3 по закону , где x 1 , x 2 , .., x n - координаты вектора в базисе , , . Найти собственные числа и собственные векторы этого оператора.
Решение. Строим матрицу этого оператора:
.
Составляем систему для определения координат собственных векторов:

Составляем характеристическое уравнение и решаем его:

.
λ 1,2 = -1, λ 3 = 3.
Подставляя λ = -1 в систему, имеем:
или
Так как , то зависимых переменных два, а свободное одно.
Пусть x 1 - свободное неизвестное, тогда Решаем эту систему любым способом и находим общее решение этой системы: Фундаментальная система решений состоит из одного решения, так как n - r = 3 - 2 = 1.
Множество собственных векторов, отвечающих собственному числу λ = -1, имеет вид: , где x 1 - любое число, отличное от нуля. Выберем из этого множества один вектор, например, положив x 1 = 1: .
Рассуждая аналогично, находим собственный вектор, отвечающий собственному числу λ = 3: .
В пространстве R 3 базис состоит из трех линейно независимых векторов, мы же получили только два линейно независимых собственных вектора, из которых базис в R 3 составить нельзя. Следовательно, матрицу A линейного оператора привести к диагональному виду не можем.

Пример 13. Дана матрица .
1. Доказать, что вектор является собственным вектором матрицы A. Найти собственное число, соответствующее этому собственному вектору.
2. Найти базис, в котором матрица A имеет диагональный вид.
Решение.
1. Если , то x - собственный вектор

.
Вектор (1, 8, -1) - собственный вектор. Собственное число λ = -1.
Диагональный вид матрица имеет в базисе, состоящем из собственных векторов. Один из них известен. Найдем остальные.
Собственные векторы ищем из системы:

Характеристическое уравнение: ;
(3 + λ)[-2(2-λ)(2+λ)+3] = 0; (3+λ)(λ 2 - 1) = 0
λ 1 = -3, λ 2 = 1, λ 3 = -1.
Найдем собственный вектор, отвечающий собственному числу λ = -3:

Ранг матрицы этой системы равен двум и равен числу неизвестных, поэтому эта система имеет только нулевое решение x 1 = x 3 = 0. x 2 здесь может быть любым, отличным от нуля, например, x 2 = 1. Таким образом, вектор (0,1,0) является собственным вектором, отвечающим λ = -3. Проверим:
.
Если λ = 1, то получаем систему
Ранг матрицы равен двум. Последнее уравнение вычеркиваем.
Пусть x 3 - свободное неизвестное. Тогда x 1 = -3x 3 , 4x 2 = 10x 1 - 6x 3 = -30x 3 - 6x 3 , x 2 = -9x 3 .
Полагая x 3 = 1, имеем (-3,-9,1) - собственный вектор, отвечающий собственному числу λ = 1. Проверка:

.
Так как собственные числа действительные и различны, то векторы, им отвечающие, линейно независимы, поэтому их можно принять за базис в R 3 . Таким образом, в базисе , , матрица A имеет вид:
.
Не всякую матрицу линейного оператора A:R n → R n можно привести к диагональному виду, поскольку для некоторых линейных операторов линейно независимых собственных векторов может быть меньше n. Однако, если матрица симметрическая, то корню характеристического уравнения кратности m соответствует ровно m линейно независимых векторов.

Определение. Симметрической матрицей называется квадратная матрица, в которой элементы, симметричные относительно главной диагонали, равны, то есть в которой .
Замечания. 1. Все собственные числа симметрической матрицы вещественны.
2. Собственные векторы симметрической матрицы, соответствующие попарно различным собственным числам, ортогональны.
В качестве одного из многочисленных приложений изученного аппарата, рассмотрим задачу об определении вида кривой второго порядка.

С матрицей А, если найдется такое число l, что АХ = lХ.

При этом число l называют собственным значением оператора (матрицы А), соответствующим вектору Х.

Иными словами, собственный вектор - это такой вектор, который под действием линейного оператора переходит в коллинеарный вектор, т.е. просто умножается на некоторое число. В отличие от него, несобственные векторы преобразуются более сложно.

Запишем определение собственного вектора в виде системы уравнений:

Перенесем все слагаемые в левую часть:

Последнюю систему можно записать в матричной форме следующим образом:

(А - lЕ)Х = О

Полученная система всегда имеет нулевое решение Х = О. Такие системы, в которых все свободные члены равны нулю, называют однородными . Если матрица такой системы - квадратная, и ее определитель не равен нулю, то по формулам Крамера мы всегда получим единственное решение - нулевое. Можно доказать, что система имеет ненулевые решения тогда и только тогда, когда определитель этой матрицы равен нулю, т.е.

|А - lЕ| = = 0

Это уравнение с неизвестным l называют характеристическим уравнением (характеристическим многочленом ) матрицы А (линейного оператора).

Можно доказать, что характеристический многочлен линейного оператора не зависит от выбора базиса.

Например, найдем собственные значения и собственные векторы линейного оператора, заданного матрицей А = .

Для этого составим характеристическое уравнение |А - lЕ| = = (1 - l) 2 - 36 = 1 - 2l + l 2 - 36 = l 2 - 2l - 35 = 0; Д = 4 + 140 = 144; собственные значения l 1 = (2 - 12)/2 = -5; l 2 = (2 + 12)/2 = 7.

Чтобы найти собственные векторы, решаем две системы уравнений

(А + 5Е)Х = О

(А - 7Е)Х = О

Для первой из них расширенная матрица примет вид

,

откуда х 2 = с, х 1 + (2/3)с = 0; х 1 = -(2/3)с, т.е. Х (1) = (-(2/3)с; с).

Для второй из них расширенная матрица примет вид

,

откуда х 2 = с 1 , х 1 - (2/3)с 1 = 0; х 1 = (2/3)с 1 , т.е. Х (2) = ((2/3)с 1 ; с 1).

Таким образом, собственными векторами этого линейного оператора являются все вектора вида (-(2/3)с; с) с собственным значением (-5) и все вектора вида ((2/3)с 1 ; с 1) с собственным значением 7.

Можно доказать, что матрица оператора А в базисе, состоящем из его собственных векторов, является диагональной и имеет вид:

,

где l i - собственные значения этой матрицы.

Верно и обратное: если матрица А в некотором базисе является диагональной, то все векторы этого базиса будут собственными векторами этой матрицы.

Также можно доказать, что если линейный оператор имеет n попарно различных собственных значений, то соответствующие им собственные векторы линейно независимы, а матрица этого оператора в соответствующем базисе имеет диагональный вид.


Поясним это на предыдущем примере. Возьмем произвольные ненулевые значения с и с 1 , но такие, чтобы векторы Х (1) и Х (2) были линейно независимыми, т.е. образовали бы базис. Например, пусть с = с 1 = 3, тогда Х (1) = (-2; 3), Х (2) = (2; 3).

Убедимся в линейной независимости этих векторов:

12 ≠ 0. В этом новом базисе матрица А примет вид А * = .

Чтобы убедиться в этом, воспользуемся формулой А * = С -1 АС. Вначале найдем С -1 .

С -1 = ;

Квадратичные формы

Квадратичной формой f(х 1 , х 2 , х n) от n переменных называют сумму, каждый член которой является либо квадратом одной из переменных, либо произведением двух разных переменных, взятым с некоторым коэффициентом: f(х 1 , х 2 , х n) = (a ij = a ji).

Матрицу А, составленную из этих коэффициентов, называют матрицей квадратичной формы . Это всегда симметрическая матрица (т.е. матрица, симметричная относительно главной диагонали, a ij = a ji).

В матричной записи квадратичная форма имеет вид f(Х) = Х Т AX, где

В самом деле

Например, запишем в матричном виде квадратичную форму .

Для этого найдем матрицу квадратичной формы. Ее диагональные элементы равны коэффициентам при квадратах переменных, а остальные элементы - половинам соответствующих коэффициентов квадратичной формы. Поэтому

Пусть матрица-столбец переменных X получена невырожденным линейным преобразованием матрицы-столбца Y, т.е. X = CY, где С - невырожденная матрица n-го порядка. Тогда квадратичная форма f(X) = Х T АХ = (CY) T A(CY) = (Y T C T)A(CY) = Y T (C T AC)Y.

Таким образом, при невырожденном линейном преобразовании С матрица квадратичной формы принимает вид: А * = C T AC.

Например, найдем квадратичную форму f(y 1 , y 2), полученную из квадратичной формы f(х 1 , х 2) = 2x 1 2 + 4х 1 х 2 - 3х 2 2 линейным преобразованием .

Квадратичная форма называется канонической (имеет канонический вид ), если все ее коэффициенты a ij = 0 при i ≠ j, т.е.
f(х 1 , х 2 , х n) = a 11 x 1 2 + a 22 x 2 2 + a nn x n 2 = .

Ее матрица является диагональной.

Теорема (доказательство здесь не приводится). Любая квадратичная форма может быть приведена к каноническому виду с помощью невырожденного линейного преобразования.

Например, приведем к каноническому виду квадратичную форму
f(х 1 , х 2 , х 3) = 2x 1 2 + 4х 1 х 2 - 3х 2 2 - х 2 х 3 .

Для этого вначале выделим полный квадрат при переменной х 1:

f(х 1 , х 2 , х 3) = 2(x 1 2 + 2х 1 х 2 + х 2 2) - 2х 2 2 - 3х 2 2 - х 2 х 3 = 2(x 1 + х 2) 2 - 5х 2 2 - х 2 х 3 .

Теперь выделяем полный квадрат при переменной х 2:

f(х 1 , х 2 , х 3) = 2(x 1 + х 2) 2 - 5(х 2 2 + 2* х 2 *(1/10)х 3 + (1/100)х 3 2) + (5/100)х 3 2 =
= 2(x 1 + х 2) 2 - 5(х 2 - (1/10)х 3) 2 + (1/20)х 3 2 .

Тогда невырожденное линейное преобразование y 1 = x 1 + х 2 , y 2 = х 2 + (1/10)х 3 и y 3 = x 3 приводит данную квадратичную форму к каноническому виду f(y 1 , y 2 , y 3) = 2y 1 2 - 5y 2 2 + (1/20)y 3 2 .

Отметим, что канонический вид квадратичной формы определяется неоднозначно (одна и та же квадратичная форма может быть приведена к каноническому виду разными способами). Однако полученные различными способами канонические формы обладают рядом общих свойств. В частности, число слагаемых с положительными (отрицательными) коэффициентами квадратичной формы не зависит от способа приведения формы к этому виду (например, в рассмотренном примере всегда будет два отрицательных и один положительный коэффициент). Это свойство называют законом инерции квадратичных форм.

Убедимся в этом, по-другому приведя ту же квадратичную форму к каноническому виду. Начнем преобразование с переменной х 2:

f(х 1 , х 2 , х 3) = 2x 1 2 + 4х 1 х 2 - 3х 2 2 - х 2 х 3 = -3х 2 2 - х 2 х 3 + 4х 1 х 2 + 2x 1 2 = -3(х 2 2 +
+ 2* х 2 ((1/6) х 3 - (2/3)х 1) + ((1/6) х 3 - (2/3)х 1) 2) + 3((1/6) х 3 - (2/3)х 1) 2 + 2x 1 2 =
= -3(х 2 + (1/6) х 3 - (2/3)х 1) 2 + 3((1/6) х 3 + (2/3)х 1) 2 + 2x 1 2 = f(y 1 , y 2 , y 3) = -3y 1 2 -
+3y 2 2 + 2y 3 2 , где y 1 = - (2/3)х 1 + х 2 + (1/6) х 3 , y 2 = (2/3)х 1 + (1/6) х 3 и y 3 = x 1 . Здесь отрицательный коэффициент -3 при y 1 и два положительных коэффициента 3 и 2 при y 2 и y 3 (а при использовании другого способа мы получили отрицательный коэффициент (-5) при y 2 и два положительных: 2 при y 1 и 1/20 при y 3).

Также следует отметить, что ранг матрицы квадратичной формы, называемый рангом квадратичной формы , равен числу отличных от нуля коэффициентов канонической формы и не меняется при линейных преобразованиях.

Квадратичную форму f(X) называют положительно (отрицательно ) определенной , если при всех значениях переменных, не равных одновременно нулю, она положительна, т.е. f(X) > 0 (отрицательна, т.е.
f(X) < 0).

Например, квадратичная форма f 1 (X) = x 1 2 + х 2 2 - положительно определенная, т.к. представляет собой сумму квадратов, а квадратичная форма f 2 (X) = -x 1 2 + 2x 1 х 2 - х 2 2 - отрицательно определенная, т.к. представляет ее можно представить в виде f 2 (X) = -(x 1 - х 2) 2 .

В большинстве практических ситуации установить знакоопределенность квадратичной формы несколько сложнее, поэтому для этого используют одну из следующих теорем (сформулируем их без доказательств).

Теорема . Квадратичная форма является положительно (отрицательно) определенной тогда и только тогда, когда все собственные значения ее матрицы положительны (отрицательны).

Теорема (критерий Сильвестра). Квадратичная форма является положительно определенной тогда и только тогда, когда все главные миноры матрицы этой формы положительны.

Главным (угловым) минором k-го порядка матрицы А n-го порядка называют определитель матрицы, составленный из первых k строк и столбцов матрицы А ().

Отметим, что для отрицательно определенных квадратичных форм знаки главных миноров чередуются, причем минор первого порядка должен быть отрицательным.

Например, исследуем на знакоопределенность квадратичную форму f(х 1 , х 2) = 2x 1 2 + 4х 1 х 2 + 3х 2 2 .

= (2 - l)*
*(3 - l) - 4 = (6 - 2l - 3l + l 2) - 4 = l 2 - 5l + 2 = 0; D = 25 - 8 = 17;
. Следовательно, квадратичная форма - положительно определенная.

Способ 2. Главный минор первого порядка матрицы А D 1 = a 11 = 2 > 0. Главный минор второго порядка D 2 = = 6 - 4 = 2 > 0. Следовательно, по критерию Сильвестра квадратичная форма - положительно определенная.

Исследуем на знакоопределенность другую квадратичную форму, f(х 1 , х 2) = -2x 1 2 + 4х 1 х 2 - 3х 2 2 .

Способ 1. Построим матрицу квадратичной формы А = . Характеристическое уравнение будет иметь вид = (-2 - l)*
*(-3 - l) - 4 = (6 + 2l + 3l + l 2) - 4 = l 2 + 5l + 2 = 0; D = 25 - 8 = 17;
. Следовательно, квадратичная форма - отрицательно определенная.

Способ 2. Главный минор первого порядка матрицы А D 1 = a 11 =
= -2 < 0. Главный минор второго порядка D 2 = = 6 - 4 = 2 > 0. Следовательно, по критерию Сильвестра квадратичная форма - отрицательно определенная (знаки главных миноров чередуются, начиная с минуса).

И в качестве еще одного примера исследуем на знакоопределенность квадратичную форму f(х 1 , х 2) = 2x 1 2 + 4х 1 х 2 - 3х 2 2 .

Способ 1. Построим матрицу квадратичной формы А = . Характеристическое уравнение будет иметь вид = (2 - l)*
*(-3 - l) - 4 = (-6 - 2l + 3l + l 2) - 4 = l 2 + l - 10 = 0; D = 1 + 40 = 41;
.

Одно из этих чисел отрицательно, а другое - положительно. Знаки собственных значений разные. Следовательно, квадратичная форма не может быть ни отрицательно, ни положительно определенной, т.е. эта квадратичная форма не является знакоопределенной (может принимать значения любого знака).

Способ 2. Главный минор первого порядка матрицы А D 1 = a 11 = 2 > 0. Главный минор второго порядка D 2 = = -6 - 4 = -10 < 0. Следовательно, по критерию Сильвестра квадратичная форма не является знакоопределенной (знаки главных миноров разные, при этом первый из них - положителен).

Самый простой линейный оператор - умножение вектора на число \(\lambda \). Этот оператор просто растягивает все вектора в \(\lambda \) раз. Его матричная форма в любом базисе - \(diag(\lambda ,\lambda ,...,\lambda)\). Фиксируем для определенности базис \(\{e\}\) в векторном пространстве \(\mathit{L}\) и рассмотрим линейный оператор с диагональной матричной формой в этом базисе, \(\alpha = diag(\lambda _1,\lambda _2,...,\lambda _n)\). Этот оператор, согласно определению матричной формы, растягивает \(e_k\) в \(\lambda _k\) раз, т.е. \(Ae_k=\lambda _ke_k\) для всех \(k=1,2,...,n\). С диагональными матрицами удобно работать, для них просто строится функциональное исчисление: для любой функции \(f(x)\) можно положить \(f(diag(\lambda _1,\lambda _2,...,\lambda _n))=diag(f(\lambda _1),f(\lambda _2),...,f(\lambda _n))\). Таким образом возникает естественный вопрос: пусть имеется линейный оператор \(A\), можно ли выбрать такой базис в векторном пространстве, чтобы матричная форма оператора \(A\) была диагональной в этом базисе? Этот вопрос приводит к определению собственных чисел и собственных векторов.

Определение. Пусть для линейного оператора \(A\) существует ненулевой вектор \(u\) и число \(\lambda \) такие, что \[ Au=\lambda \cdot u. \quad \quad(59) \] Тогда вектор \(u\) называют собственным вектором оператора \(A\), а число \(\lambda \) - соответствующим собственным числом оператора \(A\). Совокупность всех собственных чисел называют спектром линейного оператора \(A\).

Возникает естественная задача: найти для заданного линейного оператора его собственные числа и соответствующие собственные вектора. Эту задачу называют задачей о спектре линейного оператора.

Уравнение для собственных значений

Фиксируем для определенности базис в векторном пространстве, т.е. будем считать, что он раз и навсегда задан. Тогда, как обсуждалось выше, рассмотрение линейных операторов можно свести к рассмотрению матриц - матричных форм линейных операторов. Уравнение (59) перепишем в виде \[ (\alpha -\lambda E)u=0. \] Здесь \(E\) - единичная матрица, а \(\alpha\) - матричная форма нашего линейного оператора \(A\). Это соотношение можно трактовать как систему \(n\) линейных уравнений для \(n\) неизвестных - координат вектора \(u\). Причем это однородная система уравнений, и нам следует найти ее нетривиальное решение. Ранее было приведено условие существования такого решения - для этого необходимо и достаточно, чтобы ранг системы был меньше числа неизвестных. Отсюда следует уравнение для собственных чисел: \[ det(\alpha -\lambda E)=0. \quad \quad(60) \]

Определение. Уравнение (60) называется характеристическим уравнением для линейного оператора \(A\).

Опишем свойства этого уравнения и его решений. Если его выписывать в явном виде, получим уравнение вида \[ (-1)^n\lambda ^n+...+det(A)=0. \quad \quad(61) \] В левой части стоит полином по переменной \(\lambda \). Такие уравнения называются алгебраическими степени \(n\). Приведем необходимые сведения об этих уравнениях.

Справка об алгебраических уравнениях.

Теорема. Пусть все собственные числа линейного оператора \(A\) - простые. Тогда набор собственных векторов, соответствующих этим собственным числам, образует базис векторного пространства.

Из условий теоремы следует, что все собственные числа оператора \(A\) различны. Предположим, что набор собственных векторов линейно зависим, так что существуют константы \(c_1,c_2,...,c_n\), не все из которых нули, удовлетворяющие условию: \[ \sum_{k=1}^nc_ku_k=0. \quad \quad(62) \]

Рассмотрим среди таких формул такую, которая включает минимальное число слагаемых, и подействуем на нее оператором \(A\). В силу его линейности получаем: \[ A\left (\sum_{k=1}^nc_ku_k \right)=\sum_{k=1}^nc_kAu_k=\sum_{k=1}^nc_k\lambda _ku_k=0. \quad \quad(63) \]

Пусть, для определенности, \(c_1 \neq 0\). Умножая (62) на \(\lambda _1\) и вычитая из (63), получим соотношение вида (62), но содержащее на одно слагаемое меньше. Противоречие доказывает теорему.

Итак, в условиях теоремы появляется базис, связанный с данным линейным оператором - базис его собственных векторов. Рассмотрим матричную форму оператора в таком базисе. Как упоминалось выше, \(k\)-ый столбец этой матрицы - это разложение вектора \(Au_k\) по базису. Однако по определению \(Au_k=\lambda _ku_k\), так что это разложение (то, что выписано в правой части) содержит только одно слагаемое и построенная матрица оказывается диагональной. В итоге получаем, что в условиях теоремы матричная форма оператора в базисе его собственных векторов равна \(diag(\lambda _1,\lambda _2,...,\lambda _n)\). Поэтому если необходимо развивать функциональное исчисление для линейного оператора разумно работать в базисе его собственных векторов.

Если же среди собственных чисел линейного оператора есть кратные, описание ситуации становится сложнее и может включать так называемые жордановы клетки. Мы отошлем читателя к более продвинутым руководствам для изучения соответствующих ситуаций.

На изображении мы видим транформации сдвига, что происходит с Джокондой. Синий вектор меняет направление, а красный – нет. Поэтому красный является собственным вектором такого преобразования, а синий – нет. Так как красный вектор ни растянулся, ни сжался, его собственное значение равно единице. Все векторы коллинеарны красном тоже собственные (англ. eigenvector) квадратной матрицы (С собственным значением (англ. eigenvalue) ) – Это ненулевой вектор , Для которого выполняется соотношение

Где? это определенный скаляр, то есть действительное или комплексное число.
То есть, собственные векторы матрицы A – это ненулевые векторы, которые под действием линейного преобразования задаваемый матрицей A не меняют направления, но могут изменять длину на коэффициент?.
Матрица размерами имеет не более N собственных векторов и собственных значений, соответствующих им.
Соотношение (*) имеет смысл также для линейного оператора в векторном пространстве V. Если это пространство – конечномерных, то оператор можно записать в виде матрицы относительно определенно базиса V.
Поскольку собственные векторы и собственные значения было обозначено без применения координат, не зависящие от выбора базиса. Поэтому подобные матрицы имеют одинаковые собственные значения.
Ведущую роль в понимании собственных значений матриц играет теорема Гамильтона-Кэли. Из нее следует, что собственные значения матрицы A и только они являются корнями характеристического полинома матрицы A:

p (?) является полиномом степени n, следовательно по основной теореме алгебры, существует ровно n комплексных собственных значений, учитывая их кратности.
Итак, матрица A имеет не более n собственных значений (но множество собственных векторов для каждого из них).
Запишем характеристический полином через его корни:

Кратность корня характеристического полинома матрицы называется алгебраической кратностью собственного значения
Совокупность всех собственных значений матрицы или линейного оператора в конечномерных векторном пространстве называется спектром матрицы или линейного оператора. (Эта терминология видоизменяется для нескинченозмирних векторных пространств: в общем случае, к спектру оператора могут принадлежать?, которые не являются собственными значениями.)
Благодаря связи характеристического полинома матрицы с ее собственными значениями, последние еще называют характеристическим числами матрицы.
Для каждого собственного значения , Получим свою систему уравнений:

Что будет иметь линейно независимых решений.
Совокупность всех решений системы образует линейный подпространство размерности и называется собственным пространством (англ. eigenspace) матрицы с собственным значением .
Размерность собственного пространства называется геометрической кратностью соответствующего собственного значения?.
Все собственные пространства являются инвариантными подпространствами для .
Если существуют не менее двух линейно-независимые собственные векторы с одинаковым собственным значением?, то такое собственное значение называется вырожденным. Эта терминология используется преимущественно в том случае, если геометрическая и алгебраическая кратности собственных значений совпадают, например, для эрмитовых матриц.

Где – Квадратная матрица размера n x n, -Тый столбец которой является вектор , А – Это диагональная матрица с соответствующими значениями .

Проблемой собственных значений называется задача нахождения собственных векторов и чисел матрицы.
По определению (с помощью характеристического уравнения) можно находить только собственные значения матриц размерности менее пяти. Характеристическое уравнение имеет степень равную степени матрицы. Для больших степеней нахождения решений уравнения становится очень проблематичным, поэтому используют различные численные методы
Разные задачи требуют получения разного количества собственных значений. Поэтому различают несколько проблем поиска собственных значений, для каждой из которых используют свои методы.
Казалось бы частичная проблема собственных значений является частичной проблемой полной, и решается теми же методами что и полная. Однако, методы применяемые к частных задач гораздо эффективнее, поэтому могут применяться к матриц большой размерности (например в ядерной физике возникают проблемы нахождения собственных значений для матриц размерности 10 3 – 10 6).
Метод Якоби

Одним из старейших и наиболее общих подходов к решению полной проблемы собственных значений является метод Якоби, впервые был опубликован в 1846.
Метод применяют к симметричной матрицы A
Это простой итеративный алгоритм, в котором матрица с собственными векторами вычисляется последовательностью умножений.

2024 med103.ru. Я самая красивая. Мода и стиль. Разные хитрости. Уход за лицом.