Петля гистерезиса ферромагнетика объяснение. Кривая намагничивания и петля гистерезиса

Гистерезис в общем понятии (от греческого – отстающий) — это свойство определенных физических, биологических и иных систем, которые реагируют на соответствующие воздействия с учетом текущего состояния, а также предыстории.

Гистерезис характерен т.н. «насыщением», и различными траекториями соответствующих графиков, отмечающих состояние системы в данный момент времени. Последние, в итоге, имеют форму остроугольной петли.

Если же рассматривать конкретно электротехнику, то каждый электромагнитный сердечник после окончания воздействия электрического тока в течение некоторого времени сохраняет собственное магнитное поле, называемое остаточным магнетизмом.

Его величина зависит, прежде всего, от свойств материала: у закаленной стали она существенно выше, чем у мягкого железа.

Но, в любом случае, явление остаточного магнетизма всегда присутствует при перемагничивании сердечника, когда необходимо размагнитить его до нуля, а затем изменить полюс на противоположный.

Любое изменение направления тока в обмотке электромагнита предусматривает (из-за наличия вышеуказанных свойств материала) предварительное размагничивание сердечника. Только после этого он может поменять свою полярность — это известный закон физики.

Для перемагничивания в обратном направлении необходим соответствующий магнитный поток.

Другими словами: изменение сердечника не «поспевает» за соответствующими изменениями магнитного потока, которое оперативно создает обмотка.

Вот эта временная задержка намагничивания сердечника от изменений магнитных потоков и получило название в электротехнике как гистерезис.

Каждое перемагничивание сердечника предусматривает избавление от остаточного магнетизма путем воздействия противонаправленным магнитным потоком. На практике это приводит к определенным потерям электроэнергии, которые тратятся на преодоление «неправильной» ориентации молекулярных магнитиков.

Последние проявляются в виде выделения тепла, и представляют так называемые затраты на гистерезис.

Таким образом, стальные сердечники, например, статоров или якорей электродвигателей или генераторов, а также , должны иметь по возможности наименьшую корреляционную силу . Это позволит снизить гистерезисные потери, повысив в итоге КПД соответствующего электрического агрегата или прибора.

Сам процесс намагничивания определяется соответствующим графиком – так называемой петлей гистерезиса. Она представляет замкнутую кривую, отображающую зависимость скорости намагничивания от изменения динамики напряженности внешнего поля.

Большая площадь петли подразумевает, соответственно, и большие затраты на перемагничивание.

Также практически во всех электронных приборах наблюдается и такое явление, как тепловой гистерезис – невозвращение после прогрева аппаратуры к изначальному состоянию.

В и явление гистерезиса используется в различных магнитных носителях информации (например, триггерах Шмидта), или в специальных гистерезисных электродвигателях.

Широкое распространение этот физический эффект нашел также в различных устройствах, предназначенных для подавления различных шумов (дребезг контактов, быстрые колебания и т. п.) в процессе переключения логических схем.

ГИСТЕРЕЗИС (от греческого?στ?ρησις - отставание, запаздывание), запаздывание изменения физической величины, характеризующей состояние вещества, от изменения другой физической величины, определяющей внешние условия. Гистерезис имеет место в тех случаях, когда состояние тела в данный момент времени определяется внешними условиями не только в тот же, но и в предшествующие моменты времени. В результате для циклического процесса (рост и уменьшение внешнего воздействия) получается петлеобразная (неоднозначная) диаграмма, которая называется петлёй гистерезиса. Возникает гистерезис в различных веществах и при разных физических процессах. Наибольший интерес представляют магнитный, сегнетоэлектрический и упругий гистерезис.

Магнитный гистерезис - неоднозначная зависимость намагниченности М магнитоупорядоченного вещества (магнетика, например, ферро- или ферримагнетика) от внешнего магнитного поля Н при его циклическом изменении (увеличении и уменьшении). Причиной существования магнитного гистерезиса является наличие в определённом интервале изменения Н среди состояний магнетика, отвечающих минимуму термодинамического потенциала, метастабильных состояний (наряду со стабильными) и необратимых переходов между ними. Магнитный гистерезис можно также рассматривать как проявление магнитных ориентационных фазовых переходов 1-го рода, для которых прямой и обратный переходы между фазами в зависимости от Н происходят, в силу указанной метастабильности состояний, при различных значениях Н.

На рисунке 1 схематически показана типичная зависимость М от Н в ферромагнетике; из состояния М = 0 при Н = 0 с увеличением Н значение М растёт (основная кривая намагничивания, а) и в достаточно сильном поле Н ≥ H m М становится практически постоянной и равной намагниченности насыщения M s . При уменьшении Н от значения Н m намагниченность изменяется вдоль ветви б и при Н = 0 принимает значение М = M R (остаточная намагниченность). Для размагничивания вещества (М = 0) необходимо приложить обратное поле Н = -Н с, называемое коэрцитивной силой. Далее при Н = -Н m образец намагничивается до насыщения (М = -M s) в обратном направлении. При изменении Н от -Н m до +Н m намагниченность изменяется вдоль кривой в. Ветви б и в, получающиеся при изменении Н от +Н m до -H m и обратно, образуют замкнутую кривую, называемую максимальной (или предельной) петлёй гистерезиса. Ветви б и в называются, соответственно, нисходящей и восходящей ветвями петли гистерезиса. При изменении Н на отрезке [-Н 1 , Н 1 ] с Н 1 <Н m зависимость М(Н) описывается замкнутой кривой (частной петлёй гистерезиса), целиком лежащей внутри максимальной петли гистерезиса.

Описанные петли гистерезиса характерны для достаточно медленных (квазистатических) процессов перемагничивания. Отставание М от Н при намагничивании и размагничивании приводит к тому, что энергия, приобретаемая магнетиком при намагничивании, не полностью отдаётся при размагничивании. Теряемая за один цикл энергия определяется площадью петли гистерезиса. Эти потери энергии называются гистерезисными. При динамическом перемагничивании образца переменным магнитным полем Н~ петля гистерезиса оказывается шире статической вследствие того, что к квазиравновесным гистерезисным потерям добавляются динамические, которые могут быть связаны с вихревыми токами (в проводниках) и релаксационными явлениями.

Форма петли гистерезиса и наиболее важные характеристики магнитного гистерезиса (гистерезисные потери, Н с, M R и др.) зависят от химического состава вещества, его структурного состояния и температуры, от характера и распределения дефектов в образце, а следовательно, от технологии его приготовления и последующих физических обработок (тепловой, механической, термомагнитной и др.). С магнитным гистерезисом связано гистерезисное поведение целого ряда других физических свойств, например гистерезис магнитострикции, гистерезис гальваномагнитных и магнитооптических явлений и так далее.

Сегнетоэлектрический гистерезис - неоднозначная зависимость величины вектора электрической поляризации Р сегнетоэлектриков от напряжённости Е внешнего электрического поля при циклическом изменении последнего. Сегнетоэлектрики обладают в определённом температурном интервале спонтанной (т. е. самопроизвольной, возникающей в отсутствие внешнего поля) поляризацией Р сп. Направление поляризации может быть изменено электрическим полем, при этом значение Р при данном Е зависит от предыстории, т. е. от того, каким было электрическое поле в предшествующие моменты времени. Сегнетоэлектрический гистерезис имеет вид характерной петли (петля гистерезиса), основными параметрами которой являются остаточная поляризация Р ост при Е= 0 и коэрцитивное поле Е к, при котором происходит изменение направления (переключение) вектора Р сп. Для совершенных монокристаллов петля гистерезиса имеет форму, близкую к прямоугольной, и Р ОСТ = Р СП. В реальных кристаллах остаточная поляризация меньше спонтанной из-за разбиения кристалла на домены.

Существование сегнетоэлектрического гистерезиса следует из феноменологической теории сегнетоэлектрических явлений, в соответствии с которой равновесным значениям Р сп при любой температуре ниже температуры сегнетоэлектрического фазового перехода отвечают два симметричных минимума термодинамического потенциала, разделённые потенциальным барьером. При Е= + Е к один из минимумов исчезает, и кристалл оказывается в состоянии с определённым направлением вектора Р сп. При циклическом переключении спонтанной поляризации площадь петли гистерезиса определяет гистерезисные потери - количество энергии электрического поля, переходящей в теплоту. Величина коэрцитивного поля связана также с процессами зарождения и эволюции в электрическом поле сегнетоэлектрических доменов - областей кристалла с выделенным электрическим полем направлением вектора спонтанной поляризации.

Упругий гистерезис - неоднозначная зависимость механического напряжения от деформации упругого тела при циклическом приложении и снятии нагрузки. График зависимости напряжения σ от деформации ε отличается от отрезка прямой линии, соответствующей закону Гука, и представляет собой петлю гистерезиса (рис. 2).

Площадь этой петли пропорциональна механической энергии, которая рассеялась (превратилась в теплоту) во время цикла.

Появление упругого гистерезиса в металлах связано с тем, что в некоторых зёрнах поликристалла микронапряжения существенно превышают средние напряжения в образце, что приводит к появлению пластических деформаций и тем самым к рассеянию механической энергии. В некоторых случаях вклад в упругий гистерезис дают электромагнитные явления.

Упругий гистерезис как проявление отличия реального упругого тела от идеально упругого наблюдается у всех твёрдых тел, даже при весьма низких температурах. Упругий гистерезис является причиной затухания свободных колебаний упругих тел, затухания в них звука, уменьшения коэффициента восстановления при неупругом ударе и др. В общем случае отклонение упругости от идеальной включается в понятие внутреннего трения.

Лит.: Ильюшин А. А., Ленский В. С. Сопротивление материалов. М., 1959; Постников В. С. Внутреннее трение в металлах. 2-е изд. М., 1974. Вонсовский С. В. Магнетизм. М., 1984; Филиппов Б. Н., Танкеев А. П. Динамические эффекты в ферромагнетиках с доменной структурой. М., 1987; Струков Б. А., Леванюк А. П. Физические основы сегнетоэлектрических явлений в кристаллах. М., 1995.

Б. Н. Филиппов, Б. А. Струков, В. Н. Кузнецов.

В электротехнике есть разные приборы, принцип работы которых основан на электромагнитных явлениях. Где есть сердечник, на котором намотана катушка из проводящего материала, например, меди, наблюдаются взаимодействия за счёт магнитных полей. Это реле, пускатели, контакторы, электродвигатели и магниты. Среди характеристик сердечников есть такая характеристика как гистерезис. В этой статье мы рассмотрим, что это такое, а также какаие польза и вред от данного явления.

Определение понятия

У слова «Гистерезис» греческие корни, оно переводится как запаздывающий или отстающий. Этот термин используется в разных сферах науки и техники. В общем смысле понятие гистерезис отличает различное поведение системы при противоположных воздействиях.

Это можно сказать и более простыми словами. Допустим есть какая-то система, на которую можно влиять в нескольких направлениях. Если при воздействии на неё в прямом направлении, после прекращения система не возвращается в исходное состояние, а устанавливается в промежуточном — тогда чтобы вернуть в исходное состояние нужно воздействовать уже в другом направлении с какой-то силой. В этом случае система обладает гистерезисом.

Иногда это явление используется в полезных целях, например, для создания элементов, которые срабатывают при определённых пороговых значениях воздействующих сил и для регуляторов. В других случаях гистерезис несёт пагубное влияние, рассмотрим это на практике.

Гистерезис в электротехнике

В электротехнике гистерезис — это важная характеристика для материалов, из которых изготавливаются сердечники электрических машин и аппаратов. Прежде чем приступать к объяснениям, давайте рассмотрим кривую намагничивания сердечника.

Изображение на графике подобного вида называют также петлей гистерезиса.

Важно! В данном случае речь идет о гистерезисе феромагнетиков, здесь это нелинейная зависимость внутренней магнитной индукции материала от величины внешней магнитной индукции, которая зависит от предыдущего состояния элемента.

При протекании тока через проводник вокруг последнего возникает магнитное и . Если смотать провод в катушку и пропустить через него ток, то получится электромагнит. Если поместить внутрь катушки сердечник, то её индуктивность увеличится, как и силы, возникающие вокруг неё.

Отчего зависит гистерезис? Соответственно сердечник изготавливается из металла, от его типа зависят его характеристики и кривая намагничивания.

Если использовать, например, каленную сталь, то гистерезис будет шире. При выборе так называемых магнитомягких материалов — график сузится. Что это значит и для чего это нужно?

Дело в том, что при работе такой катушки в цепи переменного тока ток протекает то в одном, то в другом направлении. В результате и магнитные силы, полюса постоянно переворачивается. В катушке без сердечника это происходит в принципе одновременно, но с сердечником дела обстоят иначе. Он постепенно намагничивается, его магнитная индукция возрастает и постепенно доходит до почти горизонтального участка графика, который называется участком насыщения.

После этого, если вы начнете изменять направление тока и магнитного поля, сердечник должен будет перемагнитится. Но если просто отключить ток и тем самым убрать источник магнитного поля, сердечник все равно останется намагниченным, хоть и не так сильно. На следующем графике это точка «А». Чтобы его размагнитить до исходного состояния нужно создать уже отрицательную напряженность магнитного поля. Это точка «Б». Соответственно ток в катушке должен протекать в обратном направлении.

Значение напряженности магнитного поля для полного размагничивания сердечника называется коэрцитивной силой и чем она меньше, тем лучше в данном случае.

Перемагничивание в обратном направлении будет проходить аналогично, но уже по нижней ветви петли. То есть при работе в цепи переменного тока часть энергии будет затрачиваться на перемагничивание сердечника. Это ведёт к тому что КПД электродвигателя и трансформатора снижается. Соответственно это приводит к его нагреву.

Важно! Чем меньше гистерезис и коэрцитивная сила, тем меньше потери на перемагничивание сердечника.

Кроме выше описанного гистерезис характерен и для работы реле и других электромагнитных коммутационных приборов. Например, ток отключения и включения. Когда реле выключено, чтобы оно сработало нужно приложить определённый ток. При этом ток его удержания во включенном состоянии может быть намного ниже тока включения. Оно отключится только тогда, когда ток опустится ниже тока удержания.

Гистерезис в электронике

В электронных устройствах гистерезис несёт в основном полезные функции. Допустим это используется в пороговых элементах, например, компараторах и триггерах Шмидта. Ниже вы видите график его состояний:

Это нужно в тех случаях, чтобы устройство сработало при достижении сигнала X, после чего сигнал может начать уменьшаться и устройство не отключилось до тех пор, пока сигнал не упадет до уровня Y. Такое решение используется для подавления дребезга контакта, и случайных всплесков, а также в различных регуляторах.

Например, термостат или регулятор температуры. Обычно его принцип действия заключается в том, чтобы отключить нагревательный (или охладительный) прибор в тот момент, когда температура в помещении или другом месте достигла заданного уровня.

Рассмотрим два варианта работы кратко и просто:

  1. Без гистерезиса. Включение и отключение при заданной температуре. При этом здесь есть нюансы. Если вы установили регулятор температуры на 22 градуса и обогреваете комнату до этого уровня, то как только в комнате будет 22 он выключится, а когда вновь опустится до 21 – включится. Это не всегда правильное решение, потому что ваш управляемый прибор будет слишком часто включаться и отключаться. К тому же в большинстве бытовых и многих производственных задачах нет нужды настолько четкой поддержки температуры.
  2. С гистерезисом. Чтобы сделать некий зазор в допустимом диапазоне регулируемых параметров применяют гистерезис. То есть, если вы установили температуру в 22 градуса, то, как только она будет достигнута, обогреватель отключится. Допустим, что гистерезис в регуляторе установлен на зазор в 3 градуса, то обогреватель вновь заработает только тогда, когда температура воздуха опустится до 19 градусов.

Иногда этот зазор регулируется на ваше усмотрение. В простых исполнениях используются биметаллические пластины.

Мы рассмотрели явление и применение гистерезиса в электрике. Итог следующий: в электроприводе и трансформаторах он несет пагубный эффект, а в электронике и разнообразных регуляторах находит и полезное применение. Надеемся, предоставленная информация была для вас полезной и интересной!

Материалы

Бывает гистерезис магнитный, сегнетоэлектрический, динамический, упругий. Он также встречается в биологии, почвоведении, экономике. Причем суть у этого определения практически одинакова. Но в статье пойдет речь именно про магнитный, вы узнаете более подробно об этом явлении, от чего оно зависит и когда проявляется. Данное явление изучается в вузах с технической направленностью, в школьную программу не входит, поэтому не каждый знает о нем.

Гистерезис магнитный

Это необратимая и неоднозначная зависимость показателя намагниченности вещества (причем это, как правило, ферромагнетики магнитоупорядоченные) от внешнего При этом поле постоянно изменяется - уменьшается или увеличивается. Общая причина существования гистерезиса - это наличие в минимуме термодинамического потенциала нестабильного состояния и стабильного, а также имеются необратимые переходы между ними. Гистерезис - это также проявление магнитного ориентационного 1-го рода. При них переходы от одной к другой фазам происходят из-за метастабильных состояний. Характеристика - это график, который носит название «петля гистерезиса». Иногда еще его называют «кривой намагниченности».

Петля гистерезиса

На графике зависимости М от Н можно видеть:

  1. Из нулевого состояния, при котором М=0 и Н=0, с увеличением Н растет и М.
  2. Когда поле увеличивается, то намагниченность становится практически постоянной и равна значению насыщения.
  3. При уменьшении Н происходит обратное изменение, но вот когда Н=0, намагниченность М не будет равна нулю. Это изменение можно видеть по кривой размагничивания. И когда Н=0, М принимает значение, равное остаточной намагниченности.
  4. При увеличении Н в интервале -Нт... +Нт происходит изменение намагниченности вдоль третьей кривой.
  5. Все три кривые, описывающие процессы, соединяются и образуют своеобразную петлю. Она-то и описывает явление гистерезиса - процессы намагничивания и размагничивания.

Энергия намагничивания

Петля считается несимметричной в том случае, когда максимумы поля Н1, которые прикладываются в обратном и прямом направлениях, не являются одинаковыми. Выше была описана петля, которая характерна для медленного процесса перемагничивания. При них происходит сохранение квазиравновесных связей между значениями Н и М. Нужно обратить внимание на то, что при намагничивании или размагничивании происходит отставание М от Н. И это приводит к тому, что вся та энергия, которая приобретается ферромагнитным материалом во время намагничивания, отдается не полностью при прохождении цикла размагничивания. И вот эта разница идет вся в нагрев ферромагнетика. И петля магнитного гистерезиса оказывается в этом случае несимметричной.

Форма петли

Зависит форма петли от многих параметров - намагниченности, наличия потерь и т. д. Также немалое влияние оказывает и химический состав ферромагнетика, структурное состояние его, температура, характер и распределение дефектов, наличие обработки (тепловой, термомагнитной, механической). Следовательно, гистерезис ферромагнетиков можно изменять, подвергая материалы механической обработке. От этого изменяются все характеристики материала.

Гистерезисные потери

Во время динамического перемагничивания ферромагнетика переменным магнитным полем наблюдаются потери. Причем они составляют лишь малую долю от полных магнитных потерь. Если петли имеют одинаковую высоту (одинаковое максимальное значение намагниченности М), петля динамического вида оказывается шире статической. Происходит это вследствие того, что ко всем потерям добавляются новые. Это динамические потери, они обычно связаны с магнитной вязкостью. В сумме же получаются достаточно существенные потери на гистерезис.

Однодоменные ферромагнетики

В том случае, если частицы имеют различный размер, протекает процесс вращения. Происходит это по причине того, что образование новых доменов невыгодно с энергетической точки зрения. Но процессу вращения частиц мешает анизотропия (магнитная). Она может иметь разное происхождение - образовываться в самом кристалле, возникать вследствие упругого напряжения и т. д.). Но именно при помощи этой анизотропии намагниченность удерживается внутренним полем. Его еще называют эффективным полем магнитной анизотропии. И гистерезис магнитный возникает вследствие того, что намагниченность изменяется в двух направлениях - прямом и обратном. Во время перемагничивания однодоменных ферромагнетиков происходит несколько скачков. Вектор намагниченности М разворачивается в сторону поля Н. Причем поворот может быть однородным или неоднородным.

Многодоменные ферромагнетики

В них кривая намагничивания строится по подобному образу, но вот процессы протекают иные. При перемагничивании происходит смещение границ доменов. Следовательно, одной из причин возникновения гистерезиса может являться задержка смещений границ, а также необратимые скачки. Иногда (если у ферромагнетиков довольно большое поле) гистерезис магнитный определяется задержкой роста и образования зародышей перемагничивания. Именно из этих зародышей образуется доменная структура ферромагнитных веществ.

Теория гистерезиса

Стоит учитывать, что гистерезиса происходит также при вращении поля Н, а не только при его изменении по знаку и величине. Называется это гистерезисом магнитного вращения и соответствует изменению направления намагниченности М с изменением направления поля Н. Возникновение гистерезиса магнитного вращения наблюдается также при вращении исследуемого образца относительно фиксированного поля Н.

Кривая намагничивания характеризует также магнитную структуру домена. Структура изменяется при прохождении процессов намагничивания и перемагничивания. Изменения зависят от того, насколько смещаются границы доменов, от воздействий внешнего магнитного поля. Абсолютно все, что способно задержать все процессы, описанные выше, переводит ферромагнетики в нестабильное состояние и является причиной того, что возникает гистерезис магнитный.

Нужно учесть, что гистерезис зависит от множества параметров. Намагниченность меняется под воздействием внешних факторов - температуры, упругого напряжения, следовательно, возникает гистерезис. При этом появляется гистерезис не только намагниченности, но и всех тех свойств, от которых он зависит. Как можно видеть отсюда, явление гистерезиса можно наблюдать не только при намагничивании материала, но и при других физических процессах, связанных прямо или косвенно с ним.

Гистере́зис (от греч. hysteresis - отставание) - физическое явление, при котором наблюдается запаздывание изменения состояния системы от изменения физической величины, определяющей внешние условия.
Например, запаздывание изменения намагниченности ферромагнетика от изменения напряженности магнитного поля; запаздывание изменения поляризации сегнетоэлектрика от изменения электрического поля.
Наблюдается в тех случаях, когда состояние системы определяется внешними условиями не только в данный момент времени, но и в предшествующие моменты. Гистерезис наблюдается в разных разделах физики. Наиболее важны: магнитный гистерезис, сегнетоэлектрический гистерезис и упругий гистерезис.

Суть данного явления можно пояснить на примере работы термостата.
Рассмотрим термостат, настроенный на поддержание температуры 20 °С с помощью электрического нагревателя. Если бы управляющая нагревателем биметаллическая пластина, деформирующаяся при изменении температуры, не обладала гистерезисом, нагреватель включался бы и выключался очень часто, что приведет к быстрому износу контактов. В действительности регулятор включается при 19 °С, а выключается примерно при 21 °С. При этом механическая инерционность биметаллической пластины и тепловая инерционность нагревателя порождают явление гистерезиса, переключение режимов происходит с небольшой частотой, а температура в термостате колеблется в некотором интервале вблизи заданного значения (рис. 1 ).

Рисунок 1

Для гистерезиса характерно явление «насыщения», а также неодинаковость траекторий между крайними состояниями, отсюда наличие остроугольной петли на графиках, именуемой петлей гистерезиса. Неоднозначная зависимость состояния системы от физической величины (при циклическом изменении) изображается петлей гистерезиса (рис. 2 )

Рисунок 2

В электронике и электротехнике используются устройства, обладающие магнитным гистерезисом - различные магнитные носители информации, или электрическим гистерезисом, например, триггер Шмитта или гистерезисный двигатель. Гистерезис используется для подавления шумов (быстрых колебаний, дребезга контактов) в момент переключения логических сигналов. Например, для подавления дребезга контактов часто применяется триггер Шмитта (рис. 3 ).

Рисунок 3. Петля гистерезиса для триггера Шмитта имеет прямоугольный вид
В электронных приборах всех видов наблюдается явление теплового гистерезиса: после нагрева прибора и его последующего охлаждения до начальной температуры его параметры не возвращаются к начальным значениям. Из-за неодинакового теплового расширения кристаллов полупроводников, кристаллодержателей, корпусов микросхем и печатных плат в кристаллах возникают механические напряжения, которые сохраняются и после охлаждения. Явление теплового гистерезиса наиболее заметно в прецизионных источниках опорного напряжения, используемых в измерительных аналого-цифровых преобразователях. В современных микросхемах относительный сдвиг опорного напряжения вследствие теплового гистерезиса составляет порядка 10-100

2024 med103.ru. Я самая красивая. Мода и стиль. Разные хитрости. Уход за лицом.