Лимитирующие факторы. Законы лимитирующих факторов. Взаимодействие экологических факторов

ЛИМИТИРУЮЩИЙ ФАКТОР

ЛИМИТИРУЮЩИЙ ФАКТОР фактор, который при определенном наборе условий окружающей среды ограничивает какое-либо проявление жизнедеятельности организмов; экологический фактор, концентрация которого ниже или выше оптимальной. Понятие о лимитирующем факторе ведет начало от закона минимума Либиха (1840) и закона толерантности Шелфорда (1913). Как лимитирующий фактор особенно часто выступают температура, свет, биогенные вещества, течение и давление среды, почва , пожары, микросреда и т. д. Концепция лимитирующего фактора имеет существенное значение для охраны природы и всех отраслей природопользования, для лучшего познания компонентов экосистем.

Экологический энциклопедический словарь. - Кишинев: Главная редакция Молдавской советской энциклопедии . И.И. Дедю . 1989 .


Смотреть что такое "ЛИМИТИРУЮЩИЙ ФАКТОР" в других словарях:

    Лимитирующий фактор - (Limiting factor) нечто, ограничивающее деятельность компании (предприятия), например, дефицит того или иного ресурса или ограниченность спроса на продукцию при предлагаемой цене. То же: ключевой фактор … Экономико-математический словарь

    лимитирующий фактор - Нечто, ограничивающее деятельность компании (предприятия), например, дефицит того или иного ресурса или ограниченность спроса на продукцию при предлагаемой цене. То же: ключевой фактор Тематики экономика EN limiting … Справочник технического переводчика

    - (ОГРАНИЧИВАЮЩИЙ) любой экологический фактор, колическтвенные и качественные показатели которого как либо ограничивают жизнедеятельность организма. Экологический словарь, 2001 Фактор лимитирующий (ограничивающий) любой экологический фактор,… … Экологический словарь

    См. Лимитирующий факт пр. Экологический энциклопедический словарь. Кишинев: Главная редакция Молдавской советской энциклопедии. И.И. Дедю. 1989 … Экологический словарь

    Фактор экстремальный - (лимитирующий) природный или техногенный фактор, сила воздействия которого на человека превышает его физиологические возможности или адаптационные резервы организма. Наличие в окружающей человека среде экстремальных факторов, делает необходимым… … Экология человека

    Фактор лимитирующий - См. Фактор экстремальный … Экология человека

    У этого термина существуют и другие значения, см. Ограничивающий фактор (значения). Ограничивающие факторы экологические факторы, при выходе которых за границы максимума или минимума организму или популяции грозит гибель. Это происходит… … Википедия Википедия

Лимитирующие факторы.

Наименование параметра Значение
Тема статьи: Лимитирующие факторы.
Рубрика (тематическая категория) Экология

Степень воздействия факторов на организмы и популяции весьма различна. По этой причине выделяются наиболее значимые и мене значимые. Фактор, который находится в избытке или недостатке может влиять губительно на организм, даже если сила воздействия других факторов находится в оптимуме. Лимитирующий фактор определяет рамки (границу) распространения организмов, видов, сообществ (Блехман, 1909). Интенсивность факторов, наиболее благоприятную для жизнедеятельности, называют оптимальной или оптимумом.

Оптимальное значение для вида различно. К примеру, тепло- и холодолюбивые (слон и белый медведь), влаго- и сухолюбивые (липа и саксаул), приспособленный к высокой, низкой солености воды или пресной и т.д.

Согласно Шелфорду, факторы, присутствующие в экологической системе как в избытке, так и в недостатке по отношению к оптимальным требованиям живых организмов, называются лимитирующими. Это заключение получило название лимитирующего фактора, или закона толерантности.

Кислород в воде - ϶ᴛᴏ лимитирующий фактор.
Размещено на реф.рф
Из-за нехватки кислорода гибнет рыба в водоеме. В воздушной среде кислород не будет лимитирующим фактором, так как содержание кислорода практически постоянно, в воде лимитирующим фактором будет давление, влажность, температура и т.д.

Закон минимума. В 1873 ᴦ. химик-органик Либих установил, что рост и развитие растений зависит не только от тех химических элементов и веществ, которые присутствуют в почве в достаточном количестве, но и от тех, которых не хватает или вообще нет в почве. Избыток воды или азота не заменит недостаток бора или желœеза, которые присутствуют в почве в микроколичествах.

В результате своих исследований Либих сформулировал ʼʼЗакон минимумаʼʼ. Согласно этому закону, для повышения урожайности растений крайне важно увеличить содержание в почве питательного вещества, находящегося в минимальном количестве.

Закон взаимозаменяемости факторов. Одни факторы, находящиеся в избытке или недостатке могут смягчить или усилить силу действия других факторов. К примеру, избыток углекислого газа смягчает недостаток влаги. Недостаток освещенности смягчается повышенной влажностью. Но факторы взаимозаменяемы.

Толерантность – приспособляемость, адаптация к условиям обитания.

Этот закон был сформулирован в 1913 ᴦ. В.Шелфордом. Популяции организмов, обитающие в какой-то определœенной среде, приспосабливаются к непостоянству этой среды путем естественного отбора, у них вырабатываются те или иные физиологические особенности, позволяющие существовать именно в этих и ни в каких других условиях среды. Для каждого влияющего на организм фактора существует благоприятная сила воздействия, называемая зоной оптимума экологического фактора. Для организмов данного вида отклонение от оптимальной интенсивности действия фактора (уменьшение или увеличение) угнетает жизнедеятельность. Граница, за пределами которых наступает гибель организма, принято называть верхним и нижним пределами выносливости.

Кривая толерантности бывает широкая и пологая - ϶ᴛᴏ значит предел толерантности у организмов широкий. Такие организмы называются эвритермными (эври – разный, био – жизнь). Острая кривая означает приспосабливаемость организма низкая, предел выносливости узкий. К примеру, при изменении температуры воды на 1-2 градуса, то форель погибает. Такие организмы называются стенобионтами (стено – один, био – жизнь).

Деревья выдерживают разную температуру от -20 до + 35 градусов, значит они эвритермны, но потребляют корнями воду определœенной температуры – стеногидричны. Форель стенотермна, но эврифаᴦ. Карп – эвритермный.

Иногда при смене условий обитания живого организма кривая толерантности также смещается. К примеру, медузы живут в водах тропических широт и в морях Ледовитого океана, однако скорость их движения практически одинаковая. Разность температуры воды на 20-30 градусов.

Лимитирующие факторы. - понятие и виды. Классификация и особенности категории "Лимитирующие факторы." 2017, 2018.

Представление о лимитирующих факторах основывается на двух законах экологии: законе минимума и законе толерантности.

Закон минимума. Б середине прошлого века немецкий симик Ю. Либих (1840), изучая влияние питательных веществ на doct растений, обнаружил, что урожай зависит не от тех элементов питания, которые требуются в больших количествах и присутствуют в изобилии (например, СО2 и Н2О), а от тех, которые, хотя и нужны растению в меньших количествах, но фактически отсутствуют в почве или недоступны (например, фосфор, цинк, бор). Эту закономерность Либих сформулировал так: «Рост растения зависит от того элемента питания, который присутствует в минимальном количестве». Позднее этот вывод стал известен как закон минимума Либиха и был распространён на многие экологические факторы. Ограничивать, или лимитировать развитие организмов могут и тепло, и свет, и вода, и кислород, и другие факторы, если их качение соответствует экологическому минимуму. Например, тропическая рыба морской ангел погибает, если температура воды опустится ниже 16 °С. А развитие водорослей в глубоководных экосистемах лимитируется глубиной проникновения солнечного света: в придонных слоях водорослей нет.

Закон минимума Либиха в общем виде можно сформулировать так: рост и развитие организма зависит, в первую очередь, от тех факторов природной среды, значения которых приближается к экологическому минимуму.

Исследования показали, что закон минимума имеет два ограничения, которые следует учитывать при практическом применении.

Первое ограничение состоит в том, что закон Либиха строго применим лишь в условиях стационарного состояния системы. Например, в некотором водоеме рост водорослей ограничивается в естественных условиях недостатком фосфатов. Соединения азота при этом содержатся в воде в избытке. Если в этот водоем начнут сбрасывать сточные воды с высоким содержанием минерального фосфора, то водоем может «зацвести». Этот процесс будет прогрессировать до тех пор, пока один из элементов не израсходуется до ограничительного минимума. Теперь это может быть азот, если фосфор продолжает поступать. В переходный же момент (когда азота еще достаточно, а фосфора уже достаточно) эффекта минимума не наблюдается, т. е. ни один из этих элементов не влияет на рост водорослей.

Второе ограничение связано с взаимодействием нескольких факторов. Иногда организм способен заменить дефицитный элемент другим, химически близким. Так, в местах, где много стронция, в раковинах моллюсков он может заменять кальций при недостатке последнего. Или, например, потребность в цинке у некоторых растений снижается, если они растут в тени. Следовательно, низкая концентрация цинка меньше будет лимитировать рост растений в тени, чем на ярком свету. В этих случаях лимитирующее действие даже недостаточного количества того или иного элемента может не проявляться.

Закон толерантности был открыт английским биологом В. Шелфордом (1913), который обратил внимание на то, что ограничивать развитие живых организмов могут не только те экологические факторы, значения которых минимальны, но и те, которые характеризуются экологическим максимумом. Избыток тепла, света, воды и даже питательных веществ может оказаться столь же губительным, как и их недостаток. Диапазон экологического фактора между минимумом и максимумом В. Шелфорд назвал пределом толерантности.

Предел толерантности описывает амплитуду колебаний факторов, которая обеспечивает наиболее полноценное существование популяции. Отдельные особи могут иметь несколько иные диапазоны толерантности. Данная конкретная рыба, возможно, выдерживает более высокие или более низкие температуры или количества ядовитых веществ.

Позднее были установлены пределы толерантности относительно различных экологических факторов для многих растений и животных. Законы Ю. Либиха и В. Шелфорда помогли понять многие явления и распределение организмов в природе. Организмы не могут быть распространены повсюду потому, что популяции имеют определенный предел толерантности по отношению к колебаниям экологических факторов окружающей среды.

Закон толерантности В. Шелфорда формулируется так: рост и развитие организмов зависят, в первую очередь, от факторов среды, значения которых приближаются к экологическому минимуму или экологическому максимуму.

Было установлено следующее:

организмы с широким диапазоном толерантности ко всем факторам широко распространены в природе и часто бывают космополитами, например, многие патогенные бактерии;

организмы могут иметь широкий диапазон толерантности в отношении одного фактора и узкий диапазон относительно другого. Например, люди более выносливы к отсутствию пищи, чем к отсутствию воды, т. е. предел толерантности относительно воды более узкий, чем относительно пищи;

если условия по одному из экологических факторов становятся неоптимальными, то может измениться и предел толерантности по другим факторам. Например, при недостатке азота в почве злакам требуется гораздо больше воды;

наблюдаемые в природе реальные пределы толерантности меньше потенциальных возможностей организма адаптироваться к данному фактору. Это объясняется тем, что в природе пределы толерантности по отношению к физическим условиям среды могут сужаться биотическими отношениями: конкуренция, отсутствие опылителей, хищники и др. Любой человек лучше реализует свои потенциальные возможности в благоприятных условиях (сборы спортсменов для специальных тренировок перед ответственными соревнованиями, например). Потенциальная экологическая пластичность организма, определенная в лабораторных условиях, больше реализованных возможностей в естественных условиях. Соответственно различают потенциальную и реализованную экологические ниши;

  • - пределы толерантности у размножающихся особей и потомства меньше, чем у взрослых особей, т.е. самки в период размножения и их потомство менее выносливы, чем взрослые организмы. Так, географическое распределение промысловых птиц чаще определяется влиянием климата на яйца и птенцов, а не на взрослых птиц. Забота о потомстве и бережное отношение к материнству продиктованы законами природы. К сожалению, иногда социальные «достижения» противоречат этим законам;
  • - экстремальные (стрессовые) значения одного из факторов ведут к снижению предела толерантности по другим факторам. Если в реку сбрасывается нагретая вода, то рыбы и другие организмы тратят почти всю свою энергию на преодоление стресса. Им не хватает энергии на добывание пищи, защиту от хищников, размножение, что приводит к постепенному вымиранию. Психологический стресс также может вызывать многие соматические (гр. soma - тело) заболевания не только у человека, но и у некоторых животных (например, у собак). При стрессовых значениях фактора адаптация к нему становится все более и более «дорогостоящей».

Многие организмы способны менять толерантность к отдельным факторам, если условия меняются постепенно. Можно, например, привыкнуть к высокой температуре воды в ванне, если залезть в теплую воду, а потом постепенно добавлять горячую. Такая адаптация к медленному изменению фактора - полезное защитное свойство. Но оно может оказаться и опасным. Неожиданное, без предупреждающих сигналов, даже небольшое изменение может оказаться критическим. Наступает пороговый эффект: последняя капля» может оказаться фатальной. Например, тонкая веточка может привести к перелому уже перегруженной спины верблюда.

К счастью, не все возможные экологические факторы регулируют взаимоотношения между средой, организмами и человеком. Приоритетными в тот или иной отрезок времени оказываются различные лимитирующие факторы. На этих факторах эколог и должен сосредоточить свое внимание при изучении экосистем и управлении ими. Например, содержание кислорода в наземных местообитаниях велико, и он настолько доступен, что практически никогда не служит лимитирующим фактором (за исключением больших высот и антропогенных систем). Кислород мало интересует экологов, занимающихся наземными экосистемами. А в воде он нередко является фактором, лимитирующим развитие живых организмов («заморы» рыб, например). Поэтому гидробиолог всегда измеряет содержание кислорода в воде, в отличие от ветеринара или орнитолога, хотя для наземных организмов кислород не менее важен, чем для водных.

Лимитирующие факторы определяют и географический ареал вида. Так, продвижение организмов на север лимитируется, как правило, недостатком тепла. Биотические факторы также часто ограничивают распространение тех или иных организмов. Например, завезенный из Средиземноморья в Калифорнию инжир не плодоносил там до тех пор, пока не догадались завезти туда и определенный вид осы - единственного опылителя этого растения. Выявление лимитирующих факторов очень важно для многих видов деятельности, особенно сельского хозяйства. При целенаправленном воздействии на лимитирующие условия можно быстро и эффективно повышать урожайность растений и производительность животных. Так, при разведении пшеницы на кислых почвах никакие агрономические мероприятия не дадут эффекта, если не применять известкование, которое снизит ограничивающее действие кислот. Или, если выращивать кукурузу на почвах с очень низким содержанием фосфора, то даже при достаточном количестве воды, азота, калия и других питательных веществ она перестает расти. Фосфор в данном случае - лимитирующий фактор. И только фосфорные удобрения могут спасти урожай. Растения могут погибнуть и от слишком большого количества воды или избытка удобрений, которые в данном случае тоже являются лимитирующими факторами.

Знание лимитирующих факторов даёт ключ к управлению экосистемами. Однако в разные периоды жизни организма и в разных ситуациях в качестве лимитирующих выступают различные факторы. Поэтому только умелое регулирование условий существования может дать эффективные результаты управления.

Представление о лимитирующих факторах основывается на двух законах экологии: законе минимума и законе толерантности.

Закон минимума. Б середине прошлого века немецкий симик Ю. Либих (1840), изучая влияние питательных веществ на doct растений, обнаружил, что урожай зависит не от тех элементов питания, которые требуются в больших количествах и присутствуют в изобилии (например, СО 2 и Н 2 О), а от тех, которые, хотя и нужны растению в меньших количествах, но фактически отсутствуют в почве или недоступны (например, фосфор, цинк, бор). Эту закономерность Либих сформулировал так: «Рост растения зависит от того элемента питания, который присутствует в минимальном количестве». Позднее этот вывод стал известен как закон минимума Либиха и был распространён на многие экологические факторы. Ограничивать, или лимитировать развитие организмов могут и тепло, и свет, и вода, и кислород, и другие факторы, если их качение соответствует экологическому минимуму. Например, тропическая рыба морской ангел погибает, если температура воды опустится ниже 16 °С. А развитие водорослей в глубоководных экосистемах лимитируется глубиной проникновения солнечного света: в придонных слоях водорослей нет.

Закон минимума Либиха в общем виде можно сформулировать так: рост и развитие организма зависит, в первую очередь, от тех факторов природной среды, значения которых приближается к экологическому минимуму.

Исследования показали, что закон минимума имеет два ограничения, которые следует учитывать при практическом применении.

Первое ограничение состоит в том, что закон Либиха строго применим лишь в условиях стационарного состояния системы. Например, в некотором водоеме рост водорослей ограничивается в естественных условиях недостатком фосфатов. Соединения азота при этом содержатся в воде в избытке. Если в этот водоем начнут сбрасывать сточные воды с высоким содержанием минерального фосфора, то водоем может «зацвести». Этот процесс будет прогрессировать до тех пор, пока один из элементов не израсходуется до ограничительного минимума. Теперь это может быть азот, если фосфор продолжает поступать. В переходный же момент (когда азота еще достаточно, а фосфора уже достаточно) эффекта минимума не наблюдается, т. е. ни один из этих элементов не влияет на рост водорослей.

Второе ограничение связано с взаимодействием нескольких факторов. Иногда организм способен заменить дефицитный элемент другим, химически близким. Так, в местах, где много стронция, в раковинах моллюсков он может заменять кальций при недостатке последнего. Или, например, потребность в цинке у некоторых растений снижается, если они растут в тени. Следовательно, низкая концентрация цинка меньше будет лимитировать рост растений в тени, чем на ярком свету. В этих случаях лимитирующее действие даже недостаточного количества того или иного элемента может не проявляться.

Закон толерантности был открыт английским биологом В. Шелфордом (1913), который обратил внимание на то, что ограничивать развитие живых организмов могут не только те экологические факторы, значения которых минимальны, но и те, которые характеризуются экологическим максимумом. Избыток тепла, света, воды и даже питательных веществ может оказаться столь же губительным, как и их недостаток. Диапазон экологического фактора между минимумом и максимумом В. Шелфорд назвал пределом толерантности.

Предел толерантности описывает амплитуду колебаний факторов, которая обеспечивает наиболее полноценное существование популяции. Отдельные особи могут иметь несколько иные диапазоны толерантности. Данная конкретная рыба, возможно, выдерживает более высокие или более низкие температуры или количества ядовитых веществ.

Позднее были установлены пределы толерантности относительно различных экологических факторов для многих растений и животных. Законы Ю. Либиха и В. Шелфорда помогли понять многие явления и распределение организмов в природе. Организмы не могут быть распространены повсюду потому, что популяции имеют определенный предел толерантности по отношению к колебаниям экологических факторов окружающей среды.

Закон толерантности В. Шелфорда формулируется так: рост и развитие организмов зависят, в первую очередь, от факторов среды, значения которых приближаются к экологическому минимуму или экологическому максимуму.

Было установлено следующее:

организмы с широким диапазоном толерантности ко всем факторам широко распространены в природе и часто бывают космополитами, например, многие патогенные бактерии;

организмы могут иметь широкий диапазон толерантности в отношении одного фактора и узкий диапазон относительно другого. Например, люди более выносливы к отсутствию пищи, чем к отсутствию воды, т. е. предел толерантности относительно воды более узкий, чем относительно пищи;

если условия по одному из экологических факторов становятся неоптимальными, то может измениться и предел толерантности по другим факторам. Например, при недостатке азота в почве злакам требуется гораздо больше воды;

наблюдаемые в природе реальные пределы толерантности меньше потенциальных возможностей организма адаптироваться к данному фактору. Это объясняется тем, что в природе пределы толерантности по отношению к физическим условиям среды могут сужаться биотическими отношениями: конкуренция, отсутствие опылителей, хищники и др. Любой человек лучше реализует свои потенциальные возможности в благоприятных условиях (сборы спортсменов для специальных тренировок перед ответственными соревнованиями, например). Потенциальная экологическая пластичность организма, определенная в лабораторных условиях, больше реализованных возможностей в естественных условиях. Соответственно различают потенциальную и реализованную экологические ниши;

Пределы толерантности у размножающихся особей и потомства меньше, чем у взрослых особей, т.е. самки в период размножения и их потомство менее выносливы, чем взрослые организмы. Так, географическое распределение промысловых птиц чаще определяется влиянием климата на яйца и птенцов, а не на взрослых птиц. Забота о потомстве и бережное отношение к материнству продиктованы законами природы. К сожалению, иногда социальные «достижения» противоречат этим законам;

Экстремальные (стрессовые) значения одного из факторов ведут к снижению предела толерантности по другим факторам. Если в реку сбрасывается нагретая вода, то рыбы и другие организмы тратят почти всю свою энергию на преодоление стресса. Им не хватает энергии на добывание пищи, защиту от хищников, размножение, что приводит к постепенному вымиранию. Психологический стресс также может вызывать многие соматические (гр. soma - тело) заболевания не только у человека, но и у некоторых животных (например, у собак). При стрессовых значениях фактора адаптация к нему становится все более и более «дорогостоящей».

Многие организмы способны менять толерантность к отдельным факторам, если условия меняются постепенно. Можно, например, привыкнуть к высокой температуре воды в ванне, если залезть в теплую воду, а потом постепенно добавлять горячую. Такая адаптация к медленному изменению фактора - полезное защитное свойство. Но оно может оказаться и опасным. Неожиданное, без предупреждающих сигналов, даже небольшое изменение может оказаться критическим. Наступает пороговый эффект: последняя капля» может оказаться фатальной. Например, тонкая веточка может привести к перелому уже перегруженной спины верблюда.

К счастью, не все возможные экологические факторы регулируют взаимоотношения между средой, организмами и человеком. Приоритетными в тот или иной отрезок времени оказываются различные лимитирующие факторы. На этих факторах эколог и должен сосредоточить свое внимание при изучении экосистем и управлении ими. Например, содержание кислорода в наземных местообитаниях велико, и он настолько доступен, что практически никогда не служит лимитирующим фактором (за исключением больших высот и антропогенных систем). Кислород мало интересует экологов, занимающихся наземными экосистемами. А в воде он нередко является фактором, лимитирующим развитие живых организмов («заморы» рыб, например). Поэтому гидробиолог всегда измеряет содержание кислорода в воде, в отличие от ветеринара или орнитолога, хотя для наземных организмов кислород не менее важен, чем для водных.

Лимитирующие факторы определяют и географический ареал вида. Так, продвижение организмов на север лимитируется, как правило, недостатком тепла. Биотические факторы также часто ограничивают распространение тех или иных организмов. Например, завезенный из Средиземноморья в Калифорнию инжир не плодоносил там до тех пор, пока не догадались завезти туда и определенный вид осы - единственного опылителя этого растения. Выявление лимитирующих факторов очень важно для многих видов деятельности, особенно сельского хозяйства. При целенаправленном воздействии на лимитирующие условия можно быстро и эффективно повышать урожайность растений и производительность животных. Так, при разведении пшеницы на кислых почвах никакие агрономические мероприятия не дадут эффекта, если не применять известкование, которое снизит ограничивающее действие кислот. Или, если выращивать кукурузу на почвах с очень низким содержанием фосфора, то даже при достаточном количестве воды, азота, калия и других питательных веществ она перестает расти. Фосфор в данном случае - лимитирующий фактор. И только фосфорные удобрения могут спасти урожай. Растения могут погибнуть и от слишком большого количества воды или избытка удобрений, которые в данном случае тоже являются лимитирующими факторами.

Знание лимитирующих факторов даёт ключ к управлению экосистемами. Однако в разные периоды жизни организма и в разных ситуациях в качестве лимитирующих выступают различные факторы. Поэтому только умелое регулирование условий существования может дать эффективные результаты управления.

В середине XIX в. немецкий ученый-агрохимик Ю. Либих изучал процессы питания растений и влияние разнообразных факторов и элементов питания на их рост. Он установил, что урожай культур зачастую ограничивается (лимитируется) не теми элементами питания, которые требуются в больших количествах, например углекислым газом и водой (обычно эти вещества присутствуют в среде в изобилии), а теми, которые необходимы в минимальных количествах, но которых и в почве очень мало (например, цинк). Либих писал: «Веществом, находящимся в минимуме, управляется урожай и определяется величина и устойчивость последнего во времени».

В простейшем виде, применительно к конкретным опытам ученого, закон минимума Либиха гласит: рост растения зависит от того элемента питания, который присутствует в минимальном количестве (минимуме). В современной формулировке закон минимума звучит так: выносливость организма определяется самым слабым звеном в цепи его экологических потребностей .

Закон минимума Либиха можно пояснить на таком примере. Пусть в почве содержатся все элементы минерального питания, необходимые для данного вида растений, кроме одного из них, например бора или цинка. Рост растений на такой почве будет угнетен. Если добавить в почву нужное количество бора (цинка), то это приведет к увеличению урожая. Но если вносить любые другие химические соединения (например, азот, фосфор, калий) и даже удастся добиться того, что все они будут содержаться в оптимальных количествах, а бор (цинк) будет отсутствовать, это не даст никакого эффекта.

Изучая лимитирующее действие экологических факторов на насекомых, американский зоолог В. Шелфорд пришел к выводу, что лимитирующим фактором, ограничивающим развитие организма, может быть как минимум, так и максимум экологического воздействия. В экологии такое положение носит название закона толерантности Шелфорда, сформулированного им в 1913 г. Диапазон между минимумом и максимумом определяет величину выносливости организма, который можно характеризовать экологическим минимумом и экологическим максимумом (рис. 2). В этих пределах и может существовать данный организм.

Благоприятный диапазон действия экологического фактора называется зоной оптимума (нормальной жизнедеятельности). Чем значительнее отклонение действия фактора от оптимума, тем больше данный фактор угнетает жизнедеятельность популяции. Этот диапазон называется зоной угнетения. Максимально и минимально переносимые значения фактора — это критические точки, за пределами которых существование организма или популяции уже невозможно.

Рис. 2. Схема действия экологического фактора на растение: 1 — точка минимума; 2- точка оптимума; 3- точка максимума

Чтобы подчеркнуть отношение организма к конкретному фактору, используют термины, первая часть которых образована приставками стено- или эври-, а вторая содержит указание на конкретный фактор, например: эвритермные организмы — имеющие широкий температурный интервал (многие насекомые); стенотермные организмы — приспособившиеся к узкой амплитуде температур (для растений тропических лесов колебания температуры в пределах 5...8 °С могут быть губительными) (рис. 3).

Рис. 3. Диапазон активности эвритермных и стенотермных организмов

Смысл закона толерантности вполне понятен. Упрощенно он может быть сформулирован так: плохо как недокормить, так и перекормить растение либо животное. Из этого закона вытекает следствие: любой избыток вещества или энергии является загрязняющим среду компонентом. Например, в засушливых областях избыток воды вреден, и вода может рассматриваться как загрязнитель.

Итак, для каждого вида существуют пределы значений жизненно необходимых факторов абиотической среды, которые ограничивают зону его толерантности (устойчивости). Живой организм может существовать в определенном интервале значений факторов. Чем шире этот интервал, тем выше устойчивость организма. Закон толерантности является одним из основополагающих в современной экологии.

2024 med103.ru. Я самая красивая. Мода и стиль. Разные хитрости. Уход за лицом.