Классическое определение вероятности – теория и решение задач. Классическое и статистическое определение вероятности

Изначально, будучи всего лишь собранием сведений и эмпирических наблюдений за игрой в кости, теория вероятности стала основательной наукой. Первыми, кто придал ей математический каркас, были Ферма и Паскаль.

От размышлений о вечном до теории вероятностей

Две личности, которым теория вероятностей обязана многими фундаментальными формулами, Блез Паскаль и Томас Байес, известны как глубоко верующие люди, последний был пресвитерианским священником. Видимо, стремление этих двух ученых доказать ошибочность мнения о некой Фортуне, дарующей удачу своим любимчикам, дало толчок к исследованиям в этой области. Ведь на самом деле любая азартная игра с ее выигрышами и проигрышами — это всего лишь симфония математических принципов.

Благодаря азарту кавалера де Мере, который в равной степени был игроком и человеком небезразличным к науке, Паскаль вынужден был найти способ расчета вероятности. Де Мере интересовал такой вопрос: "Сколько раз нужно выбрасывать попарно две кости, чтобы вероятность получить 12 очков превышала 50%?". Второй вопрос, крайне интересовавший кавалера: "Как разделить ставку между участниками незаконченной игры?" Разумеется, Паскаль успешно ответил на оба вопроса де Мере, который стал невольным зачинателем развития теории вероятностей. Интересно, что персона де Мере так и осталась известна в данной области, а не в литературе.

Ранее ни один математик еще не делал попыток вычислять вероятности событий, поскольку считалось, что это лишь гадательное решение. Блез Паскаль дал первое определение вероятности события и показал, что это конкретная цифра, которую можно обосновать математическим путем. Теория вероятностей стала основой для статистики и широко применяется в современной науке.

Что такое случайность

Если рассматривать испытание, которое можно повторить бесконечное число раз, тогда можно дать определение случайному событию. Это один из вероятных исходов опыта.

Опытом является осуществление конкретных действий в неизменных условиях.

Чтобы можно было работать с результатами опыта, события обычно обозначают буквами А, B, C, D, Е…

Вероятность случайного события

Чтобы можно было приступить к математической части вероятности, нужно дать определения всем ее составляющим.

Вероятность события - это выраженная в числовой форме мера возможности появления некоторого события (А или B) в результате опыта. Обозначается вероятность как P(A) или P(B).

В теории вероятностей отличают:

  • достоверное событие гарантированно происходит в результате опыта Р(Ω) = 1;
  • невозможное событие никогда не может произойти Р(Ø) = 0;
  • случайное событие лежит между достоверным и невозможным, то есть вероятность его появления возможна, но не гарантирована (вероятность случайного события всегда в пределах 0≤Р(А)≤ 1).

Отношения между событиями

Рассматривают как одно, так и сумму событий А+В, когда событие засчитывается при осуществлении хотя бы одного из составляющих, А или В, или обоих - А и В.

По отношению друг к другу события могут быть:

  • Равновозможными.
  • Совместимыми.
  • Несовместимыми.
  • Противоположными (взаимоисключающими).
  • Зависимыми.

Если два события могут произойти с равной вероятностью, то они равновозможные .

Если появление события А не сводит к нулю вероятность появление события B, то они совместимые.

Если события А и В никогда не происходят одновременно в одном и том же опыте, то их называют несовместимыми . Бросание монеты - хороший пример: появление решки - это автоматически непоявление орла.

Вероятность для суммы таких несовместимых событий состоит из суммы вероятностей каждого из событий:

Р(А+В)=Р(А)+Р(В)

Если наступление одного события делает невозможным наступление другого, то их называют противоположными. Тогда одно из них обозначают как А, а другое - Ā (читается как «не А»). Появление события А означает, что Ā не произошло. Эти два события формируют полную группу с суммой вероятностей, равной 1.

Зависящие события имеют взаимное влияние, уменьшая или увеличивая вероятность друг друга.

Отношения между событиями. Примеры

На примерах гораздо проще понять принципы теории вероятностей и комбинации событий.

Опыт, который будет проводиться, заключается в вытаскивании шариков из ящика, а результата каждого опыта - элементарный исход.

Событие - это один из возможных исходов опыта - красный шар, синий шар, шар с номером шесть и т. д.

Испытание №1. Участвуют 6 шаров, три из которых окрашены в синий цвет, на них нанесены нечетные цифры, а три других - красные с четными цифрами.

Испытание №2. Участвуют 6 шаров синего цвета с цифрами от одного до шести.

Исходя из этого примера, можно назвать комбинации:

  • Достоверное событие. В исп. №2 событие «достать синий шар» достоверное, поскольку вероятность его появления равна 1, так как все шары синие и промаха быть не может. Тогда как событие «достать шар с цифрой 1» - случайное.
  • Невозможное событие. В исп. №1 с синими и красными шарами событие «достать фиолетовый шар» невозможное, поскольку вероятность его появления равна 0.
  • Равновозможные события. В исп. №1 события «достать шар с цифрой 2» и «достать шар с цифрой 3» равновозможные, а события «достать шар с четным числом» и «достать шар с цифрой 2» имеют разную вероятность.
  • Совместимые события. Два раза подряд получить шестерку в процессе бросания игральной кости - это совместимые события.
  • Несовместимые события. В том же исп. №1 события «достать красный шар» и «достать шар с нечетным числом» не могут быть совмещены в одном и том же опыте.
  • Противоположные события. Наиболее яркий пример этого - подбрасывание монет, когда вытягивание орла равносильно невытягиванию решки, а сумма их вероятностей - это всегда 1 (полная группа).
  • Зависимые события . Так, в исп. №1 можно задаться целью извлечь два раза подряд красный шар. Его извлечение или неизвлечение в первый раз влияет на вероятность извлечения во второй раз.

Видно, что первое событие существенно влияет на вероятность второго (40% и 60%).

Формула вероятности события

Переход от гадательных размышлений к точным данным происходит посредством перевода темы в математическую плоскость. То есть суждения о случайном событии вроде "большая вероятность" или "минимальная вероятность" можно перевести к конкретным числовым данным. Такой материал уже допустимо оценивать, сравнивать и вводить в более сложные расчеты.

С точки зрения расчета, определение вероятности события - это отношение количества элементарных положительных исходов к количеству всех возможных исходов опыта относительно определенного события. Обозначается вероятность через Р(А), где Р означает слово «probabilite», что с французского переводится как «вероятность».

Итак, формула вероятности события:

Где m - количество благоприятных исходов для события А, n - сумма всех исходов, возможных для этого опыта. При этом вероятность события всегда лежит между 0 и 1:

0 ≤ Р(А)≤ 1.

Расчет вероятности события. Пример

Возьмем исп. №1 с шарами, которое описано ранее: 3 синих шара с цифрами 1/3/5 и 3 красных с цифрами 2/4/6.

На основании этого испытания можно рассматривать несколько разных задач:

  • A - выпадение красного шара. Красных шаров 3, а всего вариантов 6. Это простейший пример, в котором вероятность события равна Р(А)=3/6=0,5.
  • B - выпадение четного числа. Всего четных чисел 3 (2,4,6), а общее количество возможных числовых вариантов - 6. Вероятность этого события равна Р(B)=3/6=0,5.
  • C - выпадение числа, большего, чем 2. Всего таких вариантов 4 (3,4,5,6) из общего количества возможных исходов 6. Вероятность события С равна Р(С)=4/6=0,67.

Как видно из расчетов, событие С имеет большую вероятность, поскольку количество вероятных положительных исходов выше, чем в А и В.

Несовместные события

Такие события не могут одновременно появиться в одном и том же опыте. Как в исп. №1 невозможно одновременно достать синий и красный шар. То есть можно достать либо синий, либо красный шар. Точно так же в игральной кости не могут одновременно появиться четное и нечетное число.

Вероятность двух событий рассматривается как вероятность их суммы или произведения. Суммой таких событий А+В считается такое событие, которое состоит в появлении события А или В, а произведение их АВ - в появлении обоих. Например, появление двух шестерок сразу на гранях двух кубиков в одном броске.

Сумма нескольких событий являет собой событие, предполагающее появление, по крайней мере, одного из них. Произведение нескольких событий - это совместное появление их всех.

В теории вероятности, как правило, употребление союза "и" обозначает сумму, союза "или" - умножение. Формулы с примерами помогут понять логику сложения и умножения в теории вероятностей.

Вероятность суммы несовместных событий

Если рассматривается вероятность несовместных событий, то вероятность суммы событий равна сложению их вероятностей:

Р(А+В)=Р(А)+Р(В)

Например: вычислим вероятность того, что в исп. №1 с синими и красными шарами выпадет число между 1 и 4. Рассчитаем не в одно действие, а суммой вероятностей элементарных составляющих. Итак, в таком опыте всего 6 шаров или 6 всех возможных исходов. Цифры, которые удовлетворяют условие, - 2 и 3. Вероятность выпадения цифры 2 составляет 1/6, вероятность цифра 3 также 1/6. Вероятность того, что выпадет цифра между 1 и 4 равна:

Вероятность суммы несовместимых событий полной группы равна 1.

Так, если в опыте с кубиком сложить вероятности выпадения всех цифр, то в результате получим единицу.

Также это справедливо для противоположных событий, например в опыте с монетой, где одна ее сторона - это событие А, а другая - противоположное событие Ā, как известно,

Р(А) + Р(Ā) = 1

Вероятность произведения несовместных событий

Умножение вероятностей применяют, когда рассматривают появление двух и более несовместных событий в одном наблюдении. Вероятность того, что в нем появятся события A и B одновременно, равна произведению их вероятностей, или:

Р(А*В)=Р(А)*Р(В)

Например, вероятность того, что в исп. №1 в результате двух попыток два раза появится синий шар, равна

То есть вероятность наступления события, когда в результате двух попыток с извлечением шаров будет извлечены только синие шары, равна 25%. Очень легко проделать практические эксперименты этой задачи и увидеть, так ли это на самом деле.

Совместные события

События считаются совместными, когда появление одного из них может совпасть с появлением другого. Несмотря на то что они совместные, рассматривается вероятность независимых событий. К примеру, бросание двух игральных костей может дать результат, когда на обеих из них выпадает цифра 6. Хотя события совпали и появились одновременно, они независимы друг от друга - могла выпасть всего одна шестерка, вторая кость на нее влияния не имеет.

Вероятность совместных событий рассматривают как вероятность их суммы.

Вероятность суммы совместных событий. Пример

Вероятность суммы событий А и В, которые по отношению к друг другу совместные, равняется сумме вероятностей события за вычетом вероятности их произведения (то есть их совместного осуществления):

Р совместн. (А+В)=Р(А)+Р(В)- Р(АВ)

Допустим, что вероятность попадания в мишень одним выстрелом равна 0,4. Тогда событие А - попадание в мишень в первой попытке, В - во второй. Эти события совместные, поскольку не исключено, что можно поразить мишень и с первого, и со второго выстрела. Но события не являются зависимыми. Какова вероятность наступления события поражения мишени с двух выстрелов (хотя бы с одного)? Согласно формуле:

0,4+0,4-0,4*0,4=0,64

Ответ на вопрос следующий: "Вероятность попасть в цель с двух выстрелов равна 64%".

Эта формула вероятности события может быть применима и к несовместным событиям, где вероятность совместно появления события Р(АВ) = 0. Это значит, что вероятность суммы несовместных событий можно считать частным случаем предложенной формулы.

Геометрия вероятности для наглядности

Интересно, что вероятность суммы совместных событий может быть представлена в виде двух областей А и В, которые пересекаются между собой. Как видно из картинки, площадь их объединения равна общей площади за минусом области их пересечения. Это геометрическое пояснения делают более понятной нелогичную на первый взгляд формулу. Отметим, что геометрические решения - не редкость в теории вероятностей.

Определение вероятности суммы множества (больше двух) совместных событий довольно громоздкое. Чтобы вычислить ее, нужно воспользоваться формулами, которые предусмотрены для этих случаев.

Зависимые события

Зависимыми события называются в случае, если наступление одного (А) из них влияет на вероятность наступления другого (В). Причем учитывается влияние как появления события А, так и его непоявление. Хотя события и называются зависимыми по определению, но зависимо лишь одно из них (В). Обычная вероятность обозначалась как Р(В) или вероятность независимых событий. В случае с зависимыми вводится новое понятие - условная вероятность Р A (В) , которая является вероятностью зависимого события В при условии произошедшего события А (гипотезы), от которого оно зависит.

Но ведь событие А тоже случайно, поэтому у него также есть вероятность, которую нужно и можно учитывать в осуществляемых расчетах. Далее на примере будет показано, как работать с зависимыми событиями и гипотезой.

Пример расчета вероятности зависимых событий

Хорошим примером для расчета зависимых событий может стать стандартная колода карт.

На примере колоды в 36 карт рассмотрим зависимые события. Нужно определить вероятность того, что вторая карта, извлеченная из колоды, будет бубновой масти, если первая извлеченная:

  1. Бубновая.
  2. Другой масти.

Очевидно, что вероятность второго события В зависит от первого А. Так, если справедлив первый вариант, что в колоде стало на 1 карту (35) и на 1 бубну (8) меньше, вероятность события В:

Р A (В) =8/35=0,23

Если же справедлив второй вариант, то в колоде стало 35 карт, и по-прежнему сохранилось полное число бубен (9), тогда вероятность следующего события В:

Р A (В) =9/35=0,26.

Видно, что если событие А условлено в том, что первая карта - бубна, то вероятность события В уменьшается, и наоборот.

Умножение зависимых событий

Руководствуясь предыдущей главой, мы принимаем первое событие (А) как факт, но если говорить по сути, оно имеет случайный характер. Вероятность этого события, а именно извлечение бубны из колоды карт, равна:

Р(А) = 9/36=1/4

Поскольку теория не существует сама по себе, а призвана служить в практических целях, то справедливо отметить, что чаще всего нужна вероятность произведения зависимых событий.

Согласно теореме о произведении вероятностей зависимых событий, вероятность появления совместно зависимых событий А и В равна вероятности одного события А, умноженная на условную вероятность события В (зависимого от А):

Р(АВ) = Р (А) *Р A (В)

Тогда в примере с колодой вероятность извлечения двух карт с мастью бубны равна:

9/36*8/35=0,0571, или 5,7%

И вероятность извлечения вначале не бубны, а потом бубны, равна:

27/36*9/35=0,19, или 19%

Видно, что вероятность появления события В больше при условии, что первой извлекается карта масти, отличной от бубны. Такой результат вполне логичный и понятный.

Полная вероятность события

Когда задача с условными вероятностями становится многогранной, то обычными методами ее вычислить нельзя. Когда гипотез больше двух, а именно А1,А2,…,А n , ..образует полную группу событий при условии:

  • P(A i)>0, i=1,2,…
  • A i ∩ A j =Ø,i≠j.
  • Σ k A k =Ω.

Итак, формула полной вероятности для события В при полной группе случайных событий А1,А2,…,А n равна:

Взгляд в будущее

Вероятность случайного события крайне необходима во многих сферах науки: эконометрике, статистике, в физике и т. д. Поскольку некоторые процессы невозможно описать детерминировано, так как они сами имеют вероятностный характер, необходимы особые методы работы. Теория вероятности события может быть использована в любой технологичной сфере как способ определить возможность ошибки или неисправности.

Можно сказать, что, узнавая вероятность, мы некоторым образом делаем теоретический шаг в будущее, разглядывая его через призму формул.

Разберём классическое определение вероятности при помощи формул и примеров.

Случайные события называются несовместимыми , если они не могут происходить одновременно. Например, когда мы подкидываем монету, выпадет что-то одно – «герб» или число» и они не могут появится одновременно, так как логично, что это невозможно. Несовместимыми могут быть такие события, как попадание и промах после сделанного выстрела.

Случайные события конечного множества образовывают полную группу попарно несовместимых событий, если при каждом испытании появляется одна, и только одна из этих событий – единственно возможные.

Рассмотрим всё тот же пример с подкидыванием монеты:

Первая монета Вторая монета События

1) «герб» «герб»

2) «герб» «число»

3) «число» «герб»

4) «число» «число»

Или сокращённо – «ГГ», – «ГЧ», – «ЧГ», – «ЧЧ».

События называются равновозможными , если условия исследования обеспечивают одинаковую возможность появления каждой из них.

Как вы понимаете, когда подбрасываете симметричную монету, тогда у неё одинаковые возможности, и есть вероятность, что выпадет как «герб», так и «число». Это же касается подбрасывания симметричного игрального кубика, так как есть вероятность того, что могут появится грани с любым числом 1, 2, 3, 4, 5, 6.

Допустим, что теперь кубик подбрасываем со смещением центра тяжести, например, в сторону грани с цифрой 1, тогда чаще всего будет выпадать противоположная грань, то есть грань с другой цифрой. Таким образом, в этой модели возможности появления для каждой из цифр от 1 до 6 будут разными.

Равновозможные и единственно возможные случайные события называются случаями.

Есть случайные события, которые относятся к случаям, а есть случайные события, которые не относятся к случаям. Ниже на примерах рассмотрим эти события.

Те случаи, в результате которых случайное событие появляется, называются благоприятными случаями для этого события.

Если обозначить через , которые влияют на событие при всех возможных случаях, а через – вероятность случайного события , тогда можно записать известное классическое определение вероятности:

Определение

Вероятность события называют отношения числа благоприятных этому событию случаев, к общему числу всех возможных случаев, то есть:

Свойства вероятности

Классическая вероятность рассмотрена, а теперь разберём основные и важные свойства вероятности.

Свойство 1. Вероятность достоверного события равняется единице.

Например, если в ведёрке все шариков белые, тогда событию , наугад выбрать белый шарик, влияют случаев, .

Свойство 2. Вероятность невозможного события равняется нулю.

Свойство 3. Вероятностью случайного события есть положительное число:

Значит, вероятность любого события удовлетворяет неравенство:

Теперь решим несколько примеров на классическое определение вероятности.

Примеры классического определения вероятности

Пример 1

Задача

В корзине 20 шариков, из них 10 белых, 7 красных и 3 чёрных. Наугад выбирается один шарик. Выбран белый шарик (событие ), красный шарик (событие ) и чёрный шарик (событие ). Найти вероятность случайных событий .

Решение

Согласно условию задачи, способствуют , а случаев из возможных, поэтому по формуле (1):

– вероятность белого шарика.

Аналогично для красного:

И для чёрного: .

Ответ

Вероятность случайного события , , .

Пример 2

Задача

В ящике лежат 25 одинаковых электроламп, из них 2 бракованные. Найти вероятность того, что наугад выбранная электролампа не бракованная.

Решение

По условию задачи все лампы одинаковые и выбирается только одна. Всего возможностей выбрать . Среди всех 25 лампа две бракованные, значит, оставшихся пригодных лампа . Поэтому по формуле (1) вероятность выбора пригодной электролампы (событие ) равняется:

Ответ

Вероятность того, что наугад выбранная электролампа не бракованная = .

Пример 3

Задача

Наугад подбрасываются две монеты. Найти вероятность таких событий:

1) – на обеих монетах выпало по гербу;

2) – на одной из монет выпал герб, а на второй – число;

3) – на обеих монетах выпали числа;

4) – хотя бы один раз выпал герб.

Решение

Здесь имеем дело с четырьмя событиями . Установим, какие случаи способствуют каждой из них. Событию способствует один случай, это когда на обеих монетах выпал герб (сокращённо «ГГ»).

Чтобы разобраться с событием , представим, что одна монета серебряная, а вторая – медная. При подбрасывании монет могут быть случаи:

1) на серебряной герб, на медной – число (обозначим – «ГЧ»);

2) на серебряной число, на медной – герб ( – «ЧГ»).

Значит, событию способствуют случаи и .

Событию способствует один случай: на обеих монетах выпали числа – «ЧЧ».

Таким образом, события или (ГГ, ГЧ, ЧГ, ЧЧ) образовывают полную группу событий, все эти события несовместимы, так как в результате подбрасывания происходит только одна из них. Кроме того, для симметричных монет все четыре события равновозможные, поэтому их можно считать случаями. Всех возможных событий – четыре .

Событию способствует только одно событие, поэтому его вероятность равняется:

Событию способствуют два случая , поэтому:

Вероятность события такая же, как и для :

Событию способствуют три случая: ГГ, ГЧ, ЧГ и поэтому:

Так как рассмотрены события ГГ, ГЧ, ЧГ, ЧЧ, которые равновозможные и создают полную группу событий, тогда появление любой из них – это достоверное событие (обозначим её буквой , которой способствуют все 4 случая . Поэтому вероятность:

Значит, подтверждается первое свойство вероятности.

Ответ

Вероятность события .

Вероятность события .

Вероятность события .

Вероятность события .

Пример 4

Задача

Подкидываются два игральных кубика с одинаковой и правильной геометрической формой. Найти вероятность всех возможных сумм на обеих гранях, что выпадают.

Решение

Чтобы было удобнее решать задачу, представьте, что один кубик белый, а второй – чёрный. С каждой из шести граней белого кубика и также может выпасть одна из шести граней чёрного кубика, поэтому всех возможных пар будет .

Так как возможность появления граней на отдельном кубике одинаковая (кубики правильной геометрической формы!), тогда одинаковой будет возможность появления каждой пары граней, причём, в результате подбрасывания выпадает только одна из пар. Значи события несовместимы, единовозможные. Это случаи, и всех возможных случаев – 36.

Теперь рассмотрим возможность значения суммы на гранях. Очевидно, что самая маленькая сумма 1 + 1 = 2, а самая большая 6 + 6 = 12. Оставшаяся часть суммы вырастает на единицу, начиная со второй. Обозначим событий, индексы которых равняются сумме очков, что выпали на гранях кубиков. Для каждой из этих событий выпишем благоприятные случаи при помощи обозначений , где – сумма, – очки на верхней грани белого кубика и – очки на грани чёрного кубика.

Значит, для события:

для – один случай (1 + 1);

для – два случая (1 + 2; 2 + 1);

для – три случая (1 + 3; 2 + 2; 3 + 1);

для – четыре случая (1 + 4; 2 + 3; 3 + 2; 4 + 1);

для – пять случаев (1 + 5; 2 + 4; 3 + 3; 4 + 2; 5 + 1);

для – шесть случаев (1 + 6; 2 + 5; 3 + 4; 4 + 3; 5 + 2; 6 + 1);

для – пять случаев (2 + 6; 3 + 5; 4 + 4; 5 + 3; 6 + 2);

для – четыре случая (3 + 6; 4 + 5; 5 + 4; 6 + 3);

для – три случая (4 + 6; 5 + 5; 6 + 4);

для – два случая (5 + 6; 6 + 5);

для – один случай (6 + 6).

Таким образом значения вероятности такие:

Ответ

Пример 5

Задача

Троим участникам перед фестивалем предложили тянуть жребий: каждый из участников по очереди подходит к ведёрку и наугад выбирает одну из трёх карточек с номерами 1, 2 и 3, что означает порядковый номер выступления данного участника.

Найти вероятность таких событий:

1) – порядковый номер в очереди совпадает с номером карточки, то есть порядковым номером выступления;

2) – ни один номер в очереди не совпадает с номером выступления;

3) – только один из номеров в очереди совпадает с номером выступления;

4) – хотя бы один из номеров в очереди совпадёт с номером выступления.

Решение

Возможными результатами выбора карточек – это перестановки из трёх элементов , количество таких перестановок равняется . Каждая из перестановок и есть событие. Обозначим эти события через . Каждому событию припишем в скобках соответствующую перестановку:

; ; ; ; ; .

Перечисленные события равновозможные и единовозможные, то есть, это и есть случаи. Обозначим так: (1ч, 2ч, 3ч) – соответствующие номера в очереди.

Начнём с события . Благоприятный только один случай поэтому:

Благоприятными для события – два случая и , поэтому:

Событию способствуют 3 случая: , поэтому:

Событию , кроме , способствует ещё и , то есть:

Ответ

Вероятность события – .

Вероятность события – .

Вероятность события – обновлено: Сентябрь 15, 2017 автором: Научные Статьи.Ру

Задачи на классическое определение вероятности.
Примеры решений

На третьем уроке мы рассмотрим различные задачи, касающиеся непосредственного применения классического определения вероятности. Для эффективного изучения материалов данной статьи рекомендую ознакомиться с базовыми понятиями теории вероятностей и основами комбинаторики . Задача на классическое определение вероятности с вероятностью, стремящейся к единице, будет присутствовать в вашей самостоятельной/контрольной работе по терверу, поэтому настраиваемся на серьёзную работу. Вы спросите, чего тут серьёзного? …всего-то одна примитивная формула . Предостерегаю от легкомыслия – тематические задания достаточно разнообразны, и многие из них запросто могут поставить в тупик. В этой связи помимо проработки основного урока, постарайтесь изучить дополнительные задачи по теме, которые находятся в копилке готовых решений по высшей математике . Приёмы решения приёмами решения, а «друзей» всё-таки «надо знать в лицо», ибо даже богатая фантазия ограничена и типовых задач тоже хватает. Ну а я постараюсь в хорошем качестве разобрать максимальное их количество.

Вспоминаем классику жанра:

Вероятность наступления события в некотором испытании равна отношению , где:

общее число всех равновозможных , элементарных исходов данного испытания, которые образуют полную группу событий ;

– количество элементарных исходов, благоприятствующих событию .

И сразу незамедлительный пит-стоп. Понятны ли вам подчёркнутые термины? Имеется ввиду чёткое, а не интуитивное понимание. Если нет, то всё-таки лучше вернуться к 1-й статье по теории вероятностей и только после этого ехать дальше.

Пожалуйста, не пропускайте первые примеры – в них я повторю один принципиально важный момент, а также расскажу, как правильно оформлять решение и какими способами это можно сделать:

Задача 1

В урне находится 15 белых, 5 красных и 10 чёрных шаров. Наугад извлекается 1 шар, найти вероятность того, что он будет: а) белым, б) красным, в) чёрным.

Решение : важнейшей предпосылкой для использования классического определения вероятности является возможность подсчёта общего количества исходов .

Всего в урне: 15 + 5 + 10 = 30 шаров, и, очевидно, справедливы следующие факты:

– извлечение любого шара одинаково возможно (равновозможность исходов) , при этом исходы элементарны и образуют полную группу событий (т.е. в результате испытания обязательно будет извлечён какой-то один из 30 шаров) .

Таким образом, общее число исходов:

Рассмотрим событие: – из урны будет извлечён белый шар. Данному событию благоприятствуют элементарных исходов, поэтому по классическому определению:
– вероятность того, то из урны будет извлечён белый шар.

Как ни странно, даже в такой простой задаче можно допустить серьёзную неточность, на которой я уже заострял внимание в первой статье по теории вероятностей . Где здесь подводный камень? Здесь некорректно рассуждать, что «раз половина шаров белые, то вероятность извлечения белого шара » . В классическом определении вероятности речь идёт об ЭЛЕМЕНТАРНЫХ исходах, и дробь следует обязательно прописать!

С другими пунктами аналогично, рассмотрим следующие события:

– из урны будет извлечён красный шар;
– из урны будет извлечён чёрный шар.

Событию благоприятствует 5 элементарных исходов, а событию – 10 элементарных исходов. Таким образом, соответствующие вероятности:

Типичная проверка многих задач по терверу осуществляется с помощью теоремы о сумме вероятностей событий, образующих полную группу . В нашем случае события образуют полную группу, а значит, сумма соответствующих вероятностей должна обязательно равняться единице: .

Проверим, так ли это: , в чём и хотелось убедиться.

Ответ :

В принципе, ответ можно записать и подробнее, но лично я привык ставить туда только числа – по той причине, что когда начинаешь «штамповать» задачи сотнями и тысячами, то стремишься максимально сократить запись решения. К слову, о краткости: на практике распространён «скоростной» вариант оформления решения :

Всего: 15 + 5 + 10 = 30 шаров в урне. По классическому определению:
– вероятность того, то из урны будет извлечён белый шар;
– вероятность того, то из урны будет извлечён красный шар;
– вероятность того, то из урны будет извлечён чёрный шар.

Ответ :

Однако если в условии несколько пунктов, то решение зачастую удобнее оформить первым способом, который отнимает чуть больше времени, но зато всё «раскладывает по полочкам» и позволяет легче сориентироваться в задаче.

Разминаемся:

Задача 2

В магазин поступило 30 холодильников, пять из которых имеют заводской дефект. Случайным образом выбирают один холодильник. Какова вероятность того, что он будет без дефекта?

Выберите целесообразный вариант оформления и сверьтесь с образцом внизу страницы.

В простейших примерах количество общих и количество благоприятствующих исходов лежат на поверхности, но в большинстве случаев картошку приходится выкапывать самостоятельно. Каноничная серия задач о забывчивом абоненте:

Задача 3

Набирая номер телефона, абонент забыл две последние цифры, но помнит, что одна из них – ноль, а другая – нечётная. Найти вероятность того, что он наберёт правильный номер.

Примечание : ноль – это чётное число (делится на 2 без остатка)

Решение : сначала найдём общее количество исходов. По условию, абонент помнит, что одна из цифр – ноль, а другая цифра – нечётная. Здесь рациональнее не мудрить с комбинаторикой и воспользоваться методом прямого перечисления исходов . То есть, при оформлении решения просто записываем все комбинации:
01, 03, 05, 07, 09
10, 30, 50, 70, 90

И подсчитываем их – всего: 10 исходов.

Благоприятствующий исход один: верный номер.

По классическому определению:
– вероятность того, что абонент наберёт правильный номер

Ответ : 0,1

Десятичные дроби в теории вероятностей смотрятся вполне уместно, но можно придерживаться и традиционного вышматовского стиля, оперируя только обыкновенными дробями.

Продвинутая задача для самостоятельного решения:

Задача 4

Абонент забыл пин-код к своей сим-карте, однако помнит, что он содержит три «пятёрки», а одна из цифр – то ли «семёрка», то ли «восьмёрка». Какова вероятность успешной авторизации с первой попытки?

Здесь ещё можно развить мысль о вероятности того, что абонента ждёт кара в виде пук-кода, но, к сожалению, рассуждения уже выйдут за рамки данного урока

Решение и ответ внизу.

Иногда перечисление комбинаций оказывается весьма кропотливым занятием. В частности, так обстоят дела в следующей, не менее популярной группе задач, где подкидываются 2 игральных кубика (реже – бОльшее количество) :

Задача 5

Найти вероятность того, что при бросании двух игральных костей в сумме выпадет:

а) пять очков;
б) не более четырёх очков;
в) от 3 до 9 очков включительно.

Решение : найдём общее количество исходов:

Способами может выпасть грань 1-го кубика и способами может выпасть грань 2-го кубика; по правилу умножения комбинаций , всего: возможных комбинаций. Иными словами, каждая грань 1-го кубика может составить упорядоченную пару с каждой гранью 2-го кубика. Условимся записывать такую пару в виде , где – цифра, выпавшая на 1-м кубике, – цифра, выпавшая на 2-м кубике. Например:

– на первом кубике выпало 3 очка, на втором – 5 очков, сумма очков: 3 + 5 = 8;
– на первом кубике выпало 6 очков, на втором – 1 очко, сумма очков: 6 + 1 = 7;
– на обеих костях выпало 2 очка, сумма: 2 + 2 = 4.

Очевидно, что наименьшую сумму даёт пара , а наибольшую – две «шестёрки».

а) Рассмотрим событие: – при бросании двух игральных костей выпадет 5 очков. Запишем и подсчитаем количество исходов, которые благоприятствуют данному событию:

Итого: 4 благоприятствующих исхода. По классическому определению:
– искомая вероятность.

б) Рассмотрим событие: – выпадет не более 4 очков. То есть, либо 2, либо 3, либо 4 очка. Снова перечисляем и подсчитываем благоприятствующие комбинации, слева я буду записывать суммарное количество очков, а после двоеточия – подходящие пары:

Итого: 6 благоприятствующих комбинаций. Таким образом:
– вероятность того, что выпадет не более 4 очков.

в) Рассмотрим событие: – выпадет от 3 до 9 очков включительно. Здесь можно пойти прямой дорогой, но… что-то не хочется. Да, некоторые пары уже перечислены в предыдущих пунктах, но работы все равно предстоит многовато.

Как лучше поступить? В подобных случаях рациональным оказывается окольный путь. Рассмотрим противоположное событие : – выпадет 2 или 10 или 11 или 12 очков.

В чём смысл? Противоположному событию благоприятствует значительно меньшее количество пар:

Итого: 7 благоприятствующих исходов.

По классическому определению:
– вероятность того, что выпадет меньше трёх или больше 9 очков.

Помимо прямого перечисления и подсчёта исходов, в ходу также различные комбинаторные формулы . И снова эпичная задача про лифт:

Задача 7

В лифт 20-этажного дома на первом этаже зашли 3 человека. И поехали. Найти вероятность того, что:

а) они выйдут на разных этажах
б) двое выйдут на одном этаже;
в) все выйдут на одном этаже.

Наше увлекательное занятие подошло к концу, и напоследок ещё раз настоятельно рекомендую если не прорешать, то хотя бы разобраться в дополнительных задачах на классическое определение вероятности . Как я уже отмечал, «набивка руки» тоже имеет значение!

Далее по курсу – Геометрическое определение вероятности и Теоремы сложения и умножения вероятностей и… везения в главном!

Решения и ответы :

Задача 2: Решение : 30 – 5 = 25 холодильников не имеют дефекта.

– вероятность того, что наугад выбранный холодильник не имеет дефекта.
Ответ :

Задача 4: Решение : найдём общее число исходов:
способами можно выбрать место, на котором расположена сомнительная цифра и на каждом из этих 4 мест могут располагаться 2 цифры (семёрка или восьмёрка). По правилу умножения комбинаций, общее число исходов: .
Как вариант, в решении можно просто перечислить все исходы (благо их немного):
7555, 8555, 5755, 5855, 5575, 5585, 5557, 5558
Благоприятствующий исход один (правильный пин-код).
Таким образом, по классическому определению:
– вероятность того, что абонент авторизируется с 1-й попытки
Ответ :

Задача 6: Решение : найдём общее количество исходов:
способами могут выпасть цифры на 2 кубиках.

а) Рассмотрим событие: – при броске двух игральных костей произведение очков будет равно семи. Для данного события не существует благоприятствующих исходов, по классическому определению вероятности:
, т.е. это событие является невозможным.

б) Рассмотрим событие: – при броске двух игральных костей произведение очков окажется не менее 20. Данному событию благоприятствуют следующие исходы:

Итого: 8
По классическому определению:
– искомая вероятность.

в) Рассмотрим противоположные события:
– произведение очков будет чётным;
– произведение очков будет нечётным.
Перечислим все исходы, благоприятствующие событию :

Итого: 9 благоприятствующих исходов.
По классическому определению вероятности:
Противоположные события образуют полную группу, поэтому:
– искомая вероятность.

Ответ :

Задача 8: Решение : вычислим общее количество исходов: способами могут упасть 10 монет.
Другой путь: способами может упасть 1-я монета и способами может упасть 2-я монета и и способами может упасть 10-я монета. По правилу умножения комбинаций, 10 монет могут упасть способами.
а) Рассмотрим событие: – на всех монетах выпадет орёл. Данному событию благоприятствует единственный исход, по классическому определению вероятности: .
б) Рассмотрим событие: – на 9 монетах выпадет орёл, а на одной – решка.
Существует монет, на которых может выпасть решка. По классическому определению вероятности: .
в) Рассмотрим событие: – орёл выпадет на половине монет.
Существует уникальных комбинаций из пяти монет, на которых может выпасть орёл. По классическому определению вероятности:
Ответ :

Чтобы количественно сравнивать между собой события по степени их возможности, очевидно, нужно с каждым событием связать определённое число, которое тем больше, чем более возможно событие. Такое число мы назовём вероятностью события. Таким образом, вероятность события есть численная мера степени объективной возможности этого события.

Первым по времени определением вероятности следует считать классическое, которое возникло из анализа азартных игр и применялось вначале интуитивно.

Классический способ определения вероятности основан на понятии равновозможных и несовместных событий, которые являются исходами данного опыта и образуют полную группу несовместных событий.

Наиболее простым примером равновозможных и несовместных событий, образующих полную группу, является появление того или иного шара из урны, содержащей несколько одинаковых по размеру, весу и другим осязаемым признакам шаров, отличающихся лишь цветом, тщательно перемешанных перед выниманием.

Поэтому об испытании, исходы которого образуют полную группу несовместных и равновозможных событий, говорят, что оно сводится к схеме урн, или схеме случаев , или укладывается в классическую схему.

Равновозможные и несовместные события, составляющие полную группу, будем называть просто случаями или шансами. При этом в каждом опыте наряду со случаями могут происходить и более сложные события.

Пример : При подбрасывании игральной кости наряду со случаями А i - выпадение i- очков на верхней грани можно рассматривать такие события, как В - выпадение чётного числа очков, С - выпадение числа очков, кратных трём …

По отношению к каждому событию, которое может произойти при осуществлении эксперимента, случаи делятся на благоприятствующие , при которых это событие происходит, и неблагоприятствующие, при которых событие не происходит. В предыдущем примере, событию В благоприятствуют случаи А 2 , А 4 , А 6 ; событию С - случаи А 3 , А 6 .

Классической вероятностью появления некоторого события называется отношение числа случаев, благоприятствующих появлению этого события, к общему числу случаев равновозможных, несовместных, составляющих полную группу в данном опыте:

где Р(А) - вероятность появления события А; m - число случаев, благоприятствующих событию А; n - общее число случаев.

Примеры:

1) (смотри пример выше) Р(В) = , Р(С) = .

2) В урне находятся 9 красных и 6 синих шаров. Найти вероятность того, что вынутые наугад один, два шара окажутся красными.

А - вынутый наугад шар красный:

m = 9, n = 9 + 6 = 15, P(A) =

B - вынутые наугад два шара красные:

Из классического определения вероятности вытекают следующие свойства (показать самостоятельно):


1) Вероятность невозможного события равна 0;

2) Вероятность достоверного события равна 1;

3) Вероятность любого события заключена между 0 и 1;

4) Вероятность события, противоположного событию А,

Классическое определение вероятности предполагает, что число исходов испытания конечно. На практике же весьма часто встречаются испытания, число возможных случаев которых бесконечно. Кроме того, слабая сторона классического определения состоит в том, что очень часто невозможно представить результат испытания в виде совокупности элементарных событий. Ещё труднее указать основания, позволяющие считать элементарные исходы испытания равновозможными. Обычно о равновозможности элементарных исходов испытания заключают из соображений симметрии. Однако такие задачи на практике встречаются весьма редко. По этим причинам наряду с классическим определением вероятности пользуются и другими определениями вероятности.

Статистической вероятностью события А называется относительная частота появления этого события в произведённых испытаниях:

где - вероятность появления события А;

Относительная частота появления события А;

Число испытаний, в которых появилось событие А;

Общее число испытаний.

В отличие от классической вероятности статистическая вероятность является характеристикой опытной, экспериментальной.

Пример : Для контроля качества изделий из партии наугад выбрано 100 изделий, среди которых 3 изделия оказались бракованными. Определить вероятность брака.

.

Статистический способ определения вероятности применим лишь к тем событиям, которые обладают следующими свойствами:

Рассматриваемые события должны быть исходами только тех испытаний, которые могут быть воспроизведены неограниченное число раз при одном и том же комплексе условий.

События должны обладать статистической устойчивостью (или устойчи- востью относительных частот). Это означает, что в различных сериях испытаний относительная частота события изменяется незначительно.

Число испытаний, в результате которых появляется событие А, должно быть достаточно велико.

Легко проверить, что свойства вероятности, вытекающие из классического определения, сохраняются и при статистическом определении вероятности.

2024 med103.ru. Я самая красивая. Мода и стиль. Разные хитрости. Уход за лицом.