Калькулятор вероятности выпадения числа. Долой неопределенность, или как найти вероятность

Понимаю, что всем хочется заранее знать, как завершится спортивное мероприятие, кто одержит победу, а кто проиграет. Обладая подобной информацией, можно без страха делать ставки на спортивные мероприятия. Но можно ли вообще и если да, то как рассчитать вероятность события?

Вероятность – это величина относительная, поэтому не может с точностью говорить о каком-либо событии. Данная величина позволяет проанализировать и оценить необходимость совершения ставки на то или иное соревнование. Определение вероятностей – это целая наука, требующая тщательного изучения и понимания.

Коэффициент вероятности в теории вероятности

В ставках на спорт есть несколько вариантов исхода соревнования:

  • победа первой команды;
  • победа второй команды;
  • ничья;
  • тотал.

У каждого исхода соревнования есть своя вероятность и частота, с которой данное событие совершится при условии сохранения начальных характеристик. Как уже говорили ранее, невозможно точно рассчитать вероятность какого-либо события – оно может совпасть, а может и не совпасть. Таким образом, ваша ставка может как выиграть, так и проиграть.

Точного 100% предугадывания результатов соревнования не может быть, так как на исход матча влияет множество факторов. Естественно, и букмекеры не знают заранее исход матча и лишь предполагают результат, принимая решение на своей системе анализа и предлагают определенные коэффициенты для ставок.

Как посчитать вероятность события?

Допустим, что коэффициент букмекера равен 2. 1/2 – получаем 50%. Получается, что коэффициент 2 равен вероятности 50%. По тому же принципу можно получить безубыточный коэффициент вероятности – 1/вероятность.

Многие игроки думают, что после нескольких повторяющихся поражений, обязательно произойдет выигрыш — это ошибочное мнение. Вероятность выигрыша ставки не зависит от количества поражений. Даже если вы выбрасываете несколько орлов подряд в игре с монеткой, вероятность выбрасывания решки останется прежней – 50%.

Существует целый класс опытов, для которых вероятности их возможных исходов легко оценить непосредственно из условий самого опыта. Для этого нужно, чтобы различные исходы опыта обладали симметрией и в силу этого были объективно одинаково возможными.

Рассмотрим, например, опыт, состоящий в бросании игральной кости, т.е. симметричного кубика, на гранях которого нанесено различное число очков: от 1 до 6.

В силу симметрии кубика есть основания считать все шесть возможных исходов опыта одинаково возможными. Именно это дает нам право предполагать, что при многократном бросании кости все шесть граней будут выпадать примерно одинаково часто. Это предположение для правильно выполненной кости действительно оправдывается на опыте; при многократном бросании кости каждая её грань появляется примерно в одной шестой доле всех случаев бросания, причем отклонение этой доли от 1/6 тем меньше, чем большее число опытов произведено. Имея в виду, что вероятность достоверного события принята равной единице, естественно приписать выпадению каждой отдельной грани вероятность, равную 1/6. Это число характеризует некоторые объективные свойства данного случайного явления, а именно свойство симметрии шести возможных исходов опыта.

Для всякого опыта, в котором возможные исходы симметричны и одинаково возможны, можно применить аналогичный прием, который называется непосредственным подсчетом вероятностей.

Симметричность возможных исходов опыта обычно наблюдается только в искусственно организованных опытах, типа азартных игр. Так как первоначальное развитие теория вероятностей получила именно на схемах азартных игр, то прием непосредственного подсчета вероятностей, исторически возникший вместе с возникновением математической теории случайных явлений, долгое время считался основным и был положен в основу так называемой «классической» теории вероятностей. При этом опыты, не обладающие симметрией возможных исходов, искусственно сводились к «классической» схеме.

Несмотря на ограниченную сферу практических применений этой схемы, она все же представляет известный интерес, так как именно на опытах, обладающих симметрией возможных исходов, и на событиях, связанных с такими опытами, легче всего познакомиться с основными свойствами вероятностей. Такого рода событиями, допускающими непосредственный подсчет вероятностей, мы и займемся в первую очередь.

Предварительно введем некоторые вспомогательные понятия.

1. Полная группа событий.

Говорят, что несколько событий в данном опыте образуют полную группу событий, если в результате опыта непременно должно появиться хотя бы одно из них.

Примеры событий, образующих полную группу:

3) появление 1,2,3,4,5,6 очков при бросании игральной кости;

4) появление белого шара и появление черного шара при вынимании одного шара из урны, в которой 2 белых и 3 черных шара;

5) ни одной опечатки, одна, две, три и более трех опечаток при проверке страницы напечатанного текста;

6) хотя бы одно попадание и хотя бы один промах при двух выстрелах.

2. Несовместимые события.

Несколько событий называют несовместимыми в данном опыте, если никакие два из них не могут появиться вместе.

Примеры несовместимых событий:

1) выпадение герба и выпадение цифры при бросании монеты;

2) попадание и промах при выстреле;

3) появление 1,3, 4 очков при одном бросании игральной кости;

4) ровно один отказ, ровно два отказа, ровно три отказа технического устройства за десять часов работы.

3. Равновозможные события.

Несколько событий в данном опыте называются равновозможными, если по условиям симметрии есть основание считать, что ни одно из этих событий не является объективно более возможным, чем другое.

Примеры равновозможных событий:

1) выпадение герба и выпадение цифры при бросании монеты;

2) появление 1,3, 4, 5 очков при бросании игральной кости;

3) появление карты бубновой, червонной, трефовой масти при вынимании карты из колоды;

4) появление шара с №1, 2, 3 при вынимании одного шара из урны, содержащей 10 перенумерованных шаров.

Существуют группы событий, обладающие всеми тремя свойствами: они образуют полную группу, несовместимы и равновозможны; например: появление герба и цифры при бросании монеты; появление 1, 2, 3, 4, 5, 6 очков при бросании игральной кости. События, образующие такую группу, называются случаями (иначе «шансами»).

Если какой-либо опыт по своей структуре обладает симметрией возможных исходов, то случаи представляют собой исчерпывающую систему равновозможных и исключающих друг друга исходов опыта. Про такой опыт говорят, что он «сводится к схеме случаев» (иначе – к «схеме урн»).

Схема случаев по преимуществу имеет место в искусственно организованных опытах, в которых заранее и сознательно обеспечена одинаковая возможность исходов опыта (как, например, в азартных играх). Для таких опытов возможен непосредственный подсчет вероятностей, основанный на оценке доли так называемых «благоприятных» случаев в общем числе случаев.

Случай называется благоприятным (или «благоприятствующим») некоторому событию, если появление этого случая влечет за собой появление данного события.

Например, при бросании игральной кости возможны шесть случаев: появление 1, 2, 3, 4, 5, 6 очков. Из них событию – появлению четного числа очков – благоприятны три случая: 2, 4, 6 и не благоприятны остальные три.

Если опыт сводится к схеме случаев, то вероятность события в данном опыте можно оценить по относительной доле благоприятных случаев. Вероятность события вычисляется как отношение числа благоприятных случаев к общему числу случаев:

где Р(А) – вероятность события ; – общее число случаев; – число случаев, благоприятных событию .

Так как число благоприятных случаев всегда заключено между 0 и (0 – для невозможного и – для достоверного события), то вероятность события, вычисленная по формуле (2.2.1), всегда есть рациональная правильная дробь:

Формула (2.2.1), так называемая «классическая формула» для вычисления вероятностей, долгое время фигурировала в литературе как определение вероятности. В настоящее время при определении (пояснении) вероятности обычно исходят из других принципов, непосредственно связывая понятие вероятности с эмпирическим понятием частоты; формула же (2.2.1) сохраняется лишь как формула для непосредственного подсчета вероятностей, пригодная тогда и только тогда, когда опыт сводится к схеме случаев, т.е. обладает симметрией возможных исходов.

Для вычисления вероятности Р А события А необходимо построить математическую модель изучаемого объекта, которая содержит событие А. Основой модели является вероятностное пространство (,?,Р), где - пространство элементарных событий, ? - класс событий с введенными над ними операциями композиции,

Вероятность любого события А, имеющего смысл в и входящего в класс событий? 25. Если, например,

то из аксиомы 3, вероятностей, следует, что

Таким образом, вычисление вероятности события А, сведено к вычислению вероятностей элементарных событий, его составляющих, а так как они являются «базовыми», то методы их вычисления не обязаны зависить от аксиоматики теории вероятностей.

Здесь рассмотрены три подхода к вычислению вероятностей элементарных событий:

классический;

геометрический;

статистический или частотный.

Классический метод вычисления вероятностей

Из аксиоматического определения вероятности следует, что вероятность существует для любого события А, но как ее вычислить, об этом ничего не говорится, хотя известно, что для каждого элементарного события i существует вероятность рi, такая, что сумма вероятностей всех элементарных событий пространства равна единице, то есть

На использовании этого факта основан классический метод вычисления вероятностей случайных событий, который в силу своей специфичности, дает способ нахождения вероятностей этих событий непосредственно из аксиом.

Пусть дано фиксированное вероятностное пространство (,?,Р), в котором:

  • а) состоит из конечного числа n элементарных событий,
  • б) каждому элементарному событию i поставлена в соответствие вероятность

Рассмотрим событие А, которое состоит из m элементарных событий:

тогда из аксиомы 3 вероятностей, в силу несовместности элементарных событий, следует, что

Тем самым имеем формулу

которую можно интерпретировать следующим образом: вероятность событию А произойти равна отношению числа элементарных событий, благоприятствующих появлению событию А, к числу всех элементарных событий из.

В этом суть классического метода вычисления вероятностей событий.

Замечание. Приписав одинаковую вероятность каждому из элементарных событий пространства, мы, с одной стороны, имея вероятностное пространство и опираясь на аксиомы теории вероятностей, получили правило вычисления вероятностей любых случайных событий из пространства по формуле (2), с другой стороны, это дает нам основание считать все элементарные события равновозможными и вычисление вероятностей любых случайных событий из свести к «урновой» схеме независимо от аксиом.

Из формулы (2) следует, что вероятность события А зависит только от числа элементарных событий, из которых оно состоит и не зависит от их конкретного содержания. Таким образом, чтобы воспользоваться формулой (2), необходимо найти число точек пространства и число точек, из которых состоит событие А, но тогда это уже задача комбинаторного анализа.

Рассмотрим несколько примеров.

Пример 8. В урне из n шаров - k красных и (n - k) черных. Наудачу извлекаем без возвращения r шаров. Какова вероятность того, что в выборке из r шаров s шаров - красных?

Решение. Пусть событие {А} {в выборке из r шаров s - красных}. Искомая вероятность находится по классической схеме, формула (2):

где - число возможных выборок объема r, которые различаются хотя бы одним номером шара, а m - число выборок объема r, в которых s шаров красных. Для, очевидно, число возможных вариантов выборки равно, а m, как следует из примера 7, равно

Таким образом, искомая вероятность равна

Пусть дан набор попарно несовместных событий As,

образующих полную группу, тогда

В этом случае говорят, что имеем распределение вероятностей событий As.

Распределения вероятностей является одним из фундаментальных понятий современной теории вероятностей и составляет основу аксиомами Колмагорова.

Определение. Распределение вероятностей

определяется гипергеометрическое распределение.

Боровков А.А. в своей книге на примере формулы (3) поясняет природу задач теории вероятностей и математической статистики следующим образом: зная состав генеральной совокупности, мы с помощью гипергеометрического распределения можем выяснить, каким может быть состав выборки - это типичная задача теории вероятностей (прямая задача). В естественных науках решают обратную задачу: по составу выборок, определяют природу генеральных совокупностей - это обратная задача, и она, образно говоря, составляет содержание математической статистики.

Обобщением биномиальных коэффициентов (сочетаний) являются полиномиальные коэффициенты, которые своим названием обязаны разложению полинома вида

по степеням слагаемых.

Полиномиальные коэффициенты (4) часто применяются при решении комбинаторных задач.

Теорема. Пусть имеется k различных ящиков, по которым раскладываются пронумерованные шары. Тогда число размещений шаров по ящикам так, чтобы в ящике с номером r находилось ri шаров,

определяется полиномиальными коэффициентами (4).

Доказательство. Поскольку порядок расположения ящиков важен, а шаров в ящиках - не важен, то для подсчета размещений шаров в любом ящике можно воспользоваться сочетаниями.

В первом ящике r1 шаров из n можно выбрать способами, во втором ящике r2 шаров, из оставшихся (n - r1) можно выбрать способами и так далее, в (k - 1) ящик rk-1 шаров выбираем

способами; в ящик k - оставшиеся

шаров попадают автоматически, одним способом.

Таким образом, всего размещений будет

Пример. По n ящикам случайно распределяются n шаров. Считая, что ящики и шары различимы, найти вероятности следующих событий:

  • а) все ящики не пустые = А0;
  • б) один ящик пуст = А1;
  • в) два ящика пустых = А2;
  • г) три ящика пустых = А3;
  • д) (n-1) - ящик пуст = А4.

Решить задачу для случая n = 5.

Решение. Из условия следует, что распределение шаров по ящикам есть простой случайный выбор, следовательно, всех вариантов nn.

Эта последовательность означает, что в первом, втором и третьем ящиках по три шара, в четвертом и пятом по два шара, в остальных (n - 5) ящиках по одному шару. Всего таких размещений шаров по ящикам будет

Так как шары на самом деле различимы, то на каждую такую комбинацию будем иметь

размещений шаров. Таким образом, всего вариантов будет

Переходим к решению по пунктам примера:

а) так как в каждом ящике находится по одному шару, то имеем последовательность 111…11, для которой число размещений равно n!/ n! = 1. Если шары различимы, то имеем n!/ 1! размещений, следовательно, всего вариантов m = 1n!= n!, отсюда

б) если один ящик пуст, то какой-то ящик содержит два шара, тогда имеем последовательность 211…10, для которой число размещений равно n! (n-2)!. Так как шары различимы, то для каждой такой комбинации имеем n!/ 2! размещений. Всего вариантов

в) если два ящика пусты, то имеем две последовательности: 311…100 и 221…100. Для первой число размещений равно

n!/ (2! (n - 3)!).

На каждую такую комбинацию имеем n!/ 3! размещений шаров. Итак, для первой последовательности, число вариантов равно

Для второй последовательности всего вариантов будет

Окончательно имеем

г) для трех пустых ящиков будет три последовательности: 411…1000, либо 3211…1000, либо 22211…1000.

Для первой последовательности имеем

Для второй последовательности

Для третьей последовательности получаем

Всего вариантов

m = k1 + k2 + k3,

Искомая вероятность равна

д) если (n -1) ящик пуст, то все шары должны находиться в одном из ящиков. Очевидно, что число комбинаций равно

Соответствующая этому событию вероятность равна

При n = 5, имеем

Заметим, что при n = 5 события Аi должны образовывать полную группу, что соответствует действительности. В самом деле

Знать, как оценить вероятность того или иного события на основе коэффициентов, крайне важно для выбора правильной ставки. Если вы не понимаете, как перевести букмекерский коэффициент в вероятность, то никогда не сможете определить, как соотносится букмекерский коэффициент с реальными шансами того, что событие состоится. Следует понимать, если вероятность события по версии букмекеров ниже, чем вероятность этого же события по вашей собственной версии, ставка на это событие будет ценной. Сравнить коэффициенты на разные события можно на сайте Odds.ru .

1.1. Типы коэффициентов

Букмекерские конторы, как правило, предлагают три типа коэффициентов – десятичный, дробный и американский. Разберем каждую из разновидностей.

1.2. Десятичные коэффициенты

Десятичные коэффициенты при умножении на размер ставки позволяют рассчитать всю сумму, которую вы получите на руки в случае выигрыша. К примеру, если вы поставили 1 доллар на коэффициент 1,80, в случае выигрыша вы получите 1 доллар 80 центов (1 доллар – возвращенная сумма ставки, 0,80 – выигрыш по ставке, он же ваша чистая прибыль).

То есть вероятность исхода, по версии букмекеров, составляет 55%.

1.3. Дробные коэффициенты

Дробные коэффициенты – наиболее традиционный вид коэффициентов. В числителе показана потенциальная сумма чистого выигрыша. В знаменателе – сумма ставки, которую нужно сделать, чтобы этот самый выигрыш получить. К примеру, коэффициент 7/2 означает, что для того, чтобы получить чистый выигрыш в размере 7 долларов, вам необходимо поставить 2 доллара.

Для того чтобы рассчитать вероятность события на основе десятичного коэффициента, следует провести простые вычисления – знаменатель разделить на сумму числителя и знаменателя. Для вышеобозначенного коэффициента 7/2 расчет будет таким:

2 / (7+2) = 2 / 9 = 0,22

То есть вероятность исхода, по версии букмекеров, составляет 22%.

1.4. Американские коэффициенты

Данный вид коэффициентов популярен в Северной Америке. На первый взгляд, они кажутся довольно сложными и непонятными, но не стоит пугаться. Понимание американских коэффициентов может вам пригодиться, например, при игре в американских казино, для понимания котировок, демонстрируемых в североамериканских спортивных трансляциях. Разберем, как оценить вероятность исхода на основе американских коэффициентов.

В первую очередь надо понимать, что американские коэффициенты бывают положительными и отрицательными. Отрицательный американский коэффициент всегда идет в формате, к примеру, «-150». Это означает, что для того, чтобы получить 100 долларов чистой прибыли (выигрыш), необходимо поставить 150 долларов.

Положительный американский коэффициент рассчитывается наоборот. К примеру, у нас есть коэффициент «+120». Это означает, что для того, чтобы получить 120 долларов чистой прибыли (выигрыш), вам необходимо поставить 100 долларов.

Расчет вероятности на основе отрицательных американских коэффициентов делается по следующей формуле:

(-(отрицательный американский коэффициент)) / ((-(отрицательный американский коэффициент)) + 100)

(-(-150)) / ((-(-150)) + 100) = 150 / (150 + 100) = 150 / 250 = 0,6

То есть вероятность события, на которое дается отрицательный американский коэффициент «-150», составляет 60%.

Теперь рассмотрим аналогичные вычисления для положительного американского коэффициента. Вероятность в этом случае рассчитывается по следующей формуле:

100 / (положительный американский коэффициент + 100)

100 / (120 + 100) = 100 / 220 = 0.45

То есть вероятность события, на которое дается положительный американский коэффициент «+120», составляет 45%.

1.5. Как переводить коэффициенты из одного формата в другой?

Умение переводить коэффициенты из одного формата в другой может впоследствии сослужить вам хорошую службу. Как ни странно, до сих пор есть конторы, в которых коэффициенты не конвертируются и показаны лишь в одном, непривычном для нас формате. Рассмотрим на примерах, как это делать. Но для начала нам надо научиться вычислять вероятность исхода на основе данного нам коэффициента.

1.6. Как на основе вероятности рассчитать десятичный коэффициент?

Здесь все очень просто. Необходимо 100 разделить на вероятность события в процентном отношении. То есть, если предполагаемая вероятность события составляет 60%, вам надо:

При предполагаемой вероятности события в 60% десятичный коэффициент будет составлять 1,66.

1.7. Как на основе вероятности рассчитать дробный коэффициент?

В данном случае необходимо 100 разделить на вероятность события и от полученного результата отнять единицу. К примеру, вероятность события составляет 40%:

(100 / 40) — 1 = 2,5 — 1 = 1,5

То есть мы получаем дробный коэффициент 1,5/1 или, для удобства счета, – 3/2.

1.8. Как на основе вероятного исхода рассчитать американский коэффициент?

Здесь многое будет зависеть от вероятности события – будет ли она более 50% или менее. Если вероятность события более 50%, то расчет будет производиться по такой формуле:

— ((вероятность) / (100 — вероятность)) * 100

Например, если вероятность события составляет 80%, то:

— (80 / (100 — 80)) * 100 = — (80 / 20) * 100 = -4 * 100 = (-400)

При предполагаемой вероятности события в 80% мы получили отрицательный американский коэффициент «-400».

Если вероятность события менее 50 процентов, то формула будет следующей:

((100 — вероятность) / вероятность) * 100

Например, если вероятность события составляет 40%, то:

((100-40) / 40) * 100 = (60 / 40) * 100 = 1,5 * 100 = 150

При предполагаемой вероятности события в 40% мы получили положительный американский коэффициент «+150».

Эти вычисления помогут вам лучше понять концепцию ставок и коэффициентов, научиться оценивать истинную стоимость той или иной ставки.

Нравится нам это или нет, но наша жизнь полна всевозможных случайностей, как приятных так и не очень. Поэтому каждому из нас не помешало бы знать, как найти вероятность того или иного события. Это поможет принимать верные решения при любых обстоятельствах, которые связаны с неопределенностью. К примеру, такие знания окажутся весьма кстати при выборе вариантов инвестирования, оценке возможности выигрыша в акции или лотерее, определении реальности достижения личных целей и т. д., и т. п.

Формула теории вероятности

В принципе, изучение данной темы не занимает слишком много времени. Для того чтобы получить ответ на вопрос: "Как найти вероятность какого-либо явления?", нужно разобраться с ключевыми понятиями и запомнить основные принципы, на которых базируется расчёт. Итак, согласно статистике, исследуемые события обозначаются через A1, А2,..., An. У каждого из них есть как благоприятствующие исходы (m), так и общее количество элементарных исходов. К примеру, нас интересует, как найти вероятность того, что на верхней грани кубика окажется четное число очков. Тогда А - это бросок m - выпадение 2, 4 или 6 очков (три благоприятствующих варианта), а n - это все шесть возможных вариантов.

Сама же формула расчета выглядит следующим образом:

С одним исходом все предельно легко. А вот как найти вероятность, если события идут одно за другим? Рассмотрим такой пример: из карточной колоды (36 шт.) показывается одна карта, затем она прячется снова в колоду, и после перемешивания вытаскивается следующая. Как найти вероятность того, что хоть в одном случае была вытащена дама пик? Существует следующее правило: если рассматривается сложное событие, которое можно разделить на несколько несовместимых простых событий, то можно сначала рассчитать результат для каждого из них, а затем сложить их между собой. В нашем случае это будет выглядеть так: 1 / 36 + 1 / 36 = 1 / 18 . А как же быть тогда, когда несколько происходят одновременно? Тогда результаты умножаем! Например, вероятность того, что при одновременном подбрасывании сразу двух монет выпадут две решки, будет равна: ½ * ½ = 0.25.

Теперь возьмем еще более сложный пример. Предположим, мы попали на книжную лотерею, в которой из тридцати билетов десять являются выигрышными. Требуется определить:

  1. Вероятность того, что оба окажутся выигрышными.
  2. Хотя бы один из них принесет приз.
  3. Оба окажутся проигрышными.

Итак, рассмотрим первый случай. Его можно разбить на два события: первый билет будет счастливым, и второй также окажется счастливым. Учтем, что события зависимы, поскольку после каждого вытаскивания общее количество вариантов уменьшается. Получаем:

10 / 30 * 9 / 29 = 0,1034.

Во втором случае понадобится определить вероятность проигрышного билета и учесть, что он может быть как первым по счету, так и вторым: 10 / 30 * 20 / 29 + 20 / 29 * 10 / 30 = 0,4598.

Наконец, третий случай, когда по разыгранной лотерее даже одной книжки получить не получится: 20 / 30 * 19 / 29 = 0,4368.

2024 med103.ru. Я самая красивая. Мода и стиль. Разные хитрости. Уход за лицом.