Диаграмма Герцшпрунга-Рассела (лабораторная работа)

Помните раздел о видах звезд в детской энциклопедии? Большинству известна эта картинка: ряд звезд с Солнцем посередине, увеличивающихся по размеру слева направо. Это, пусть и в упрощенном виде, диаграмма Герцшпрунга-Рассела - одна с основополагающих классификационных астрономических систем. Подобно другим популяризированным научным теориям, диаграмма ГР дала человечеству куда больше, чем просто наглядную демонстрацию классификации космических светил. С ее помощью астрономы смогли упорядочить один с центральных процессов во Вселенной - .

Путь к истине

Вывели диаграмму Герцшпрунга-Рассела в начале двадцатого века - переломный период для астрономии. Вместо описания космических объектов, протоколирования их движения и периодических явлений, астрономы задались новым вопросом - почему все происходит именно так?

Построение диаграммы стало результатом одним из множества логических экспериментов, проводимых в то время. Американцу Норрису Расселу и датчанину Эйнару Герцшпрунгу одновременно пришла в голову идея. Что будет, если выстроить звезды в одну систему координат, где их положение по вертикальной оси зависело бы от силы свечения, а по горизонтальной - от температуры? Если бы звезды распределились по системе равномерно, никакого открытия не было бы. Но любое отклонение от порядка показало бы закономерность в устройстве светил, объясняющая многие загадки.

Так и случилось. Если сила свечения по оси Y будет расти снизу вверх, а температура по оси X - справа налево, то звезды делятся на три четко выраженные группы - последовательности, как их именуют астрофизики:

  • Посередине, с верхнего левого в нижний правый угол, тянется Главная последовательность - ряд обычных, карликовых звезд, составляющих 90% от количества звезд во Вселенной. К ним относится и наше Солнце. Их температура прямо пропорциональна светимости - чем горячее звезда, тем ярче она горит.
  • В верхнем правом углу собрались светила, которые очень яркие, но с низкой температурой - на это указывает их красный цвет. В этой последовательности собрались звезды гиганты и сверхгиганты.
  • Ниже главной последовательности находятся звезды, нагревающиеся до голубого и белого цветов, а света излучают совсем немного. Это - .

Разделение на последовательности не было самоцелью создания диаграммы. Выявленная закономерность между энергией и излучением звезды, связанная с протеканием внутреннего термоядерного процесса, стала иллюстрацией самой наглядной динамики во Вселенной - эволюции звезд.

Жизненный путь звезды

С момента образования, звезда в развитии не стоит на месте - и в диаграмме Герцшпрунца-Рассела это видно лучше всего. Рождение, старение и смерть светила отслеживается по диаграмме ГР четкой линией, называемой «эволюционным треком». Взяв, к примеру, трек нашего Солнца, можно выделить следующие этапы:

Немного истории

С диаграммой Герцшпрунга-Рассела связан небольшой курьез - как это часто случалось в науке, ее вывели двое ученых одновременно. Американец Рассел изучал долгое время закономерности развития звезд, и создал концепцию диаграммы в 1909 году - ее так и называли «диаграммой Рассела» Однако, Герцшпрунг в Дании, независимо от коллеги, вывел в точности такую же систему, и даже опубликовал плоды своего труда в 1905 году. Поскольку печать он вышел в тематическом журнале о фотографии и на немецком языке, о его первенстве мир узнал только в 1930-х годах. Тогда к названию и добавили имя Герцшпрунга.

В 1908 г. датский астроном Э.Герцшпрунг и в 1910 г. американский астроном Г.Рессел независимо друг от друга сопоставил L (абсолютные звездные величины M ) звезд со спектральными классами Sp (температурами T ) этих же звезд, то есть построили диаграмму “спектр- “ - самую знаменитую и самую важную диаграмму астрономии (рис. 3). По оси абсцисс диаграммы Герцшпрунга-Рессела (диаграммы Г-Р) откладываются Sp от O до M (внизу диаграммы), причем класс O располагается ближе к началу координат, либо температура T (вверху диаграммы); по оси ординат откладывается визуальная абсолютная звездная величина M V (слева) или L, выраженная в светимостях Солнца (справа) причем ближе к началу координат в порядке убывания располагаются положительные значения абсолютных звездных величин. Все известные стационарные (нормальные) звезды по совокупности двух характеристик занимают на диаграмме строго определенное место, в соответствии с которым м присваивается тот или иной .

Рисунок 3.

Класс светимости – астрофизический параметр, характеризующий звезду по тому месту на диаграмме Герцшпрунга-Рессела, которое занимает по совокупности двух характеристик: спектра (или температуры) (или абсолютной звездной величины); определяется принадлежностью к той или иной последовательности на диаграмме Герцшпрунга-Рессела и обозначается римской цифрой. Классификация, разработанная в Йеркской обсерваторией У.Морганом, Ф.Кинаном и Э.Келлманом, называется классификацией (системой) Моргана-Кинана-Келлмана., или классификацией МКК (МК).

Большинство стационарных звезд (более 80%) “ложатся” на диагональ диаграммы. Верхний конец диаграммы находится в области высоких температур и (M = -5 m ÷ -6 m , O), нижний конец - в области низких температур и (M = +15 m , M). Эта диагональ называется главной последовательностью, звезды, лежащие на ней, - ми главной последовательности или ми пятого класса светимости. Звезды V класса светимости, расположенные в верхней части главной последовательности, называются голубыми или горячими гигантами. голубых гигантов L ≈ 10 4 ÷ 10 6 , O или B, B - V = -0 m 45÷ -0 m 20, температура T ≈ 2 ¸ 5 × 10 4 K, масса M ≈ 30M ⊙ . Белые гиганты – так часто называют звезды главной последовательности, расположенные вблизи A; таких звезд L ≈ 10 2 , B - V ≈ 0 m , температура T ≈ 10000K, масса M ≈ 5 ¸ 10M ⊙ . Солнце, визуальная абсолютная звездная величина которого M V ⊙ = +4 m ,82 а G2, является звездой главной последовательности (V ). Звезды, расположенные в этой области главной последовательности, называются желтыми карликами: таких звезд L ≈ 1, B - V ≈ +0 m ,6, температура T ≈ 6000K, масса M ≈ M ⊙ . Наконец, звезды, расположенные в нижней части главной последовательности (ниже Солнца), называются красными или холодными карликами; их К или M, максимум излучения приходится на красную область спектра, то есть B - V ≈ +1 m 0÷ +2 m 5, M V ≈ +15 m ÷ +8 m , L ≈ 10 -3 ÷ 10 -1 , масса M ≈ 0,1 × M ⊙ .

В верхней части диаграммы почти параллельно оси абсцисс располагаются сверхгиганты или звезды I класса светимости – это звезды B0÷ M5, абсолютной звездной величины M V ≈ -5 m ÷ -8 m , светимости L ≈ 10 3 ÷ 10 6 и массы M ≈ 10÷ 40M ⊙ . I подразделяется на две параллельные ветви: Ia – яркие сверхгиганты, Ib – слабые сверхгиганты. В верхнем правом углу (M V = -5 m ÷ -6 m , K, M) расположены красные звезды I класса светимости, обладающие низкой поверхностной яркостью, высочайшей ю и, следовательно, очень большими радиусами, - красные сверхгиганты.

Ниже них на диаграмме Г-Р находятся звезды II класса светимости или яркие гиганты - звезды B0÷ V ≈ -5 m , светимости L ~ 10 4 , и массы M ≈ 10÷ 15M ⊙ . Еще ниже в области абсолютных звездных величин M V ≈ 0 m ÷ -3 m располагаются красные и желтые гиганты или звезды III класса светимости – это звезды G0÷ M5, абсолютной звездной величины M V ≈ 0 m ÷ -3 m , светимости L ≈ 10 2÷ 10 3 , массы M ≈ 3 ¸ 7M ⊙ .

Между последовательностью гигантов и главной последовательностью проходит последовательность субгигантов или звезд IV класса светимости, то есть звезд F0÷ M0, абсолютной звездной величины M V ≈ +3 m ÷ 0 m , светимости L ≈ 1÷ 10 2 и массы M ≈ 1÷ 3M ⊙ . Гиганты и субгиганты образуют на диаграмме Г-Р ветвь гигантов. L ≈ 10 -2÷ 1, масса M ≈ 0,1÷ 1M ⊙ . Субкарлики относятся к м VI класса светимости.

В нижнем левом углу диаграммы в области низких и высоких температур (M V = +15 m÷ +10 m , спектральный класс O ... F) мы обнаружим белые карлики или звезды VII класса светимости. Эти удивительные звезды имеют радиус R ~ 10 -2 R ⊙ , массу M < 1,4M ⊙ , а их средняя плотность r ~ 10 6 ¸ 10 9 г/см 3 . является такой же важной характеристикой звезды, как масса, радиус или температура. Ценность диаграммы Г-Р заключается в том, что она является эволюционной диаграммой, то есть отнесение звезды к конкретному классу светимости свидетельствует о той , на которой эта находится в момент наблюдений.

Если удалось получить хороший спектр звезды и по особенностям в спектре определить, к какому классу светимости относится , то по диаграмме Герцшпрунга-Рессела для этой звезды можно оценить значение абсолютной звездной величины M . Далее легко получить расстояние до звезды, используя соотношение (18) для модуля расстояний. Метод оценки расстояний с помощью спектра звезды и диаграммы Герцшпрунга-Рессела называется методом спектральных параллаксов.

Звезды. Диаграмма Герцшпрунга-Рассела.


Сопоставление светимостей звезд с их спектральными классами впервые было сделано в начале XX века Эйнаром Герцшпрунгом и Генри Расселом, поэтому диаграмму спектр-светимость часто называют диаграммой Герцшпрунга–Рассела. На этой диаграмме по оси абсцисс откладываются спектральные классы (или эффективные температуры), по оси ординат – светимости L (или абсолютные звездные величины М). Если бы между светимостями и их температурами не было никакой зависимости, то все звезды распределялись на такой диаграмме равномерно. Но на диаграмме обнаруживаются несколько закономерностей, которые называют последовательностями.


Диаграмма Герцшпрунга – Рассела.

Большинство звезд (около 90 %), располагаются на диаграмме вдоль длинной узкой полосы, называемой главной последовательностью. Она протянулась из верхнего левого угла (от голубых сверхгигантов) в нижний правый угол (до красных карликов). К звездам главной последовательности относится Солнце, светимость которого принимают за единицу. Точки, соответствующие гигантам и сверхгигантам, располагаются над главной последовательностью справа, а соответствующие белым карликам – в нижнем левом углу, под главной последовательностью. По распределению звезд в соответствии с их светимостью и температурой на диаграмме Герцшпрунга–Рассела выделены следующие классы светимости:

  • сверхгиганты – I класс светимости;
  • гиганты – II класс светимости;
  • звезды главной последовательности – V класс светимости;
  • субкарлики – VI класс светимости;
  • белые карлики – VII класс светимости.

Принято указывать класс светимости после спектрального класса звезды. Солнце – звезда G2V. В настоящее время выяснилось, что звезды главной последовательности – нормальные звезды, похожие на Солнце, в которых происходит сгорание водорода в термоядерных реакциях. Главная последовательность – это последовательность звезд разной массы. Самые большие по массе звезды располагаются в верхней части главной последовательности и являются голубыми гигантами. Самые маленькие по массе звезды – карлики. Они располагаются в нижней части главной последовательности. Параллельно главной последовательности, но несколько ниже ее располагаются субкарлики. Они отличаются от звезд главной последовательности меньшим содержанием металлов.

Выяснилось, что положение звезды на диаграмме Герцшпрунга – Рассела изменяется в зависимости от возраста звезды. Большую часть своей жизни звезда проводит на главной последовательности. В этот период ее цвет, температура, светимость и другие параметры почти не меняются. Но до того, как звезда достигнет этого устойчивого состояния, еще в состоянии протозвезды, она имеет красный цвет и в течение короткого времени большую светимость, чем будет иметь на главной последовательности.

Звезды большой массы (сверхгиганты) щедро расходуют свою энергию, и эволюция таких звезд продолжается всего сотни миллионов лет. Поэтому голубые сверхгиганты являются молодыми звездами. Стадии эволюции звезды после главной последовательности также короткие. Типичные звезды становятся при этом красными гигантами, очень массивные звезды – красными сверхгигантами. Звезда быстро увеличивается в размере, и ее светимость возрастает. Именно эти фазы эволюции отражаются на диаграмме Герцшпрунга–Рассела. В 1911–24 гг. астрономы Холм, Рассел, Герцшпрунг и Эддингтон установили, что для звезд главной последовательности существует связь между светимостью L и массой М, и построили диаграмму масса–светимость.

Термоядерный механизм излучения звезды качественно объясняет зависимость масса–светимость: чем больше масса, тем больше светимость. Действительно, при большей массе в недрах звезды достигаются более высокие температуры. Вероятность реакций синтеза возрастает, соответственно выделяется больше энергии и увеличивается светимость звезды.


Современный вид диаграммы масса–светимость.

Источник информации: "Открытая Астрономия 2.5", ООО "ФИЗИКОН"

Звезды бывают множества типов. Есть звезды, диаметр которых в 30 раз превышает диаметр Солнца, и есть звезды размером всего лишь с большой земной город. Есть звезды настолько горячие, что основной цвет в спектре их излучения - фиолетовый, и есть звезды настолько «холодные», что даже темно-красный свет в их спектре выражен крайне тускло. В XIX веке в астрономии произошел перелом - ученые стали сходить с накатанного пути классической астрономии («Где это, и как и куд а оно движется?») и переходить на рельсы астрофизики («Что это, и как оно устроено?»). Одной из первоочередных задач на этом пути стала задача хотя бы внешнего упорядочивания классификации наблюдаемых во Вселенной звезд. Это и привело к независимому созданию двумя астрофизиками диаграммы, которую сегодня принято в их честь называть диаграммой Герцшпрунга-Рассела (или, сокращенно, «диаграммы ГР»).

Диаграмма ГР - как это нередко бывает в науке - была практически одновременно разработана двумя учеными, совершенно самостоятельно работавшими на двух разных континентах. Генри Норрис Рассел - один из крупнейших американских астрономов начала XX века - долгие годы интересовался проблемой описания жизненного цикла звезд и, судя по всему, пришел к основной идее диаграммы еще в 1909 году, однако работа с ее представлением была опубликована лишь в 1913 году. Датчанин Эйнар Герцшпрунг пришел к тем же выводам, что и Рассел, несколькими годами раньше своего американского коллеги, однако опубликованы они были (в 1905-м и 1907 годах) в узкоспециализированном «Журнале научной фотографии» (Zeitschrift für Wissenschaeftliche Photographie), издающемся к тому же на немецком языке, и публикация эта поначалу попросту осталась незамеченной астрономами. Поэтому вплоть до середины 1930-х годов эту диаграмму принято было называть просто «диаграммой Рассела», пока не был обнаружен случившийся казус, после чего датчанину было воздано должное, и теперь диаграмма носит имена обоих ученых.

Диаграмма ГР представляет собой график, на котором по вертикальной оси отсчитывается светимость (интенсивность светового излучения) звезд, а по горизонтальной - наблюдаемая температура их поверхностей. Оба этих количественных показателя поддаются экспериментальному измерению при условии, что известно расстояние от Земли до соответствующей звезды. Чисто исторически сложилось так, что по горизонтальной оси х температуру поверхности звезд откладывают в обратном порядке: то есть, чем жарче звезда, тем левее она находится; это чистая условность, и я не вижу смысла в том, чтобы ее обсуждать и оспаривать. Смысл же всей диаграммы ГР заключается в том, чтобы нанести на нее как можно больше экспериментально наблюдаемых звезд (каждая из которых представлена соответствующей точкой) и по их расположению определить некие закономерности их распределения по соотношению спектра и светимости.

Выясняется, что это распределение носит отнюдь не случайный характер: по соотношению спектра со светимостью звезды делятся на три достаточно строгие категории или, как принято их называть в астрофизике, «последовательности». Из верхнего левого угла в правый нижний тянется так называемая главная последовательность. К ней относится, в частности, и наше Солнце. В верхней части главной последовательности расположены самые яркие и горячие звезды, а справа внизу - самые тусклые и, как следствие, долгоживущие.

Отдельно - правее и выше - расположена группа звезд с очень высокой светимостью, не пропорциональной их температуре, которая относительно низка - это так называемые красные звезды-гиганты и сверхгиганты. Эти огромные звезды, условно говоря, светят, но не греют. Ниже и левее главной последовательности расположены карлики - группа относительно мелких и холодных звезд. Еще раз отметим, что подавляющее большинство звезд относится к главной последовательности, и энергия в них образуется путем термоядерного синтеза гелия из водорода.

На самом деле, три этих последовательности на диаграмме ГР строго соответствуют трем этапам жизненного цикла звезд. Красные гиганты и сверхгиганты в правом верхнем углу - это доживающие свой век звезды с до предела раздувшейся внешней оболочкой (через 6,5 млрд. лет такая участь постигнет и наше Солнце - его внешняя оболочка выйдет за пределы орбиты Венеры). Они излучают в пространство примерно то же количество энергии, что и звезды основного ряда, но, поскольку площадь поверхности, через которую излучается эта энергия, превосходит площадь поверхности молодой звезды на несколько порядков, сама поверхность гиганта остается относительно холодной.

Наконец, обратимся к левому нижнему углу диаграммы ГР: здесь мы видим так называемых белых карликов (см. Предел Чандрасекара). Это очень горячие звезды - но очень мелкие, размером, обычно, не больше нашей Земли. Поэтому, излучая в космос относительно немного энергии, они, по причине весьма незначительной (на фоне других звезд) площади их поверхностной оболочки, светятся в достаточно ярком спектре, поскольку она оказывается достаточно высокотемпературной.

Вообще, по диаграмме Герцшпрунца-Рассела можно проследить весь жизненный путь звезды. Сначала звезда главной последовательности (подобная Солнцу) конденсируется из газо-пылевого облака и уплотняется до создания давлений и температур, необходимых для разжигания первичной реакции термоядерного синтеза, и, соответственно появляется где-то в основной последовательности диаграммы ГР. Пока звезда горит (запасы водорода не исчерпаны), она так и остается (как сейчас Солнце) на своем месте в основной последовательности, практически не смещаясь. После того, как запасы водорода исчерпаны, звезда сначала перегревается и раздувается до размеров красного гиганта или сверхгиганта, отправляясь в правый верхний угол диаграммы, а затем остывает и сжимается до размеров белого карлика, оказываясь слева внизу.

По материалам сайта: elementy.ru

(варианты транслитерации: диаграмма Герцшпрунга - Рессела , Расселла , просто диаграмма Г-Р или диаграмма цвет - звёздная величина , спектр - светимость ) показывает зависимость между абсолютной звёздной величиной , светимостью , спектральным классом и температурой поверхности звезды . Звёзды на этой диаграмме образуют хорошо различимые участки.

Была предложена примерно в 1910 году независимо Эйнаром Герцшпрунгом (Дания) и Генри Расселом (США). Диаграмма используется для классификации звёзд и соответствует современным представлениям о звёздной эволюции .

Диаграмма даёт возможность (хотя и не очень точно) найти абсолютную звездную величину по спектральному классу, особенно для спектральных классов O-F. Для поздних классов это осложняется необходимостью сделать выбор между гигантом и карликом, однако определённые различия в интенсивности некоторых линий позволяют уверенно сделать этот выбор .

Около 90 % звёзд находятся на главной последовательности . Их светимость обусловлена термоядерными реакциями превращения водорода в гелий . Выделяется также несколько ветвей проэволюционировавших звёзд - гигантов , в которых происходит горение гелия и более тяжёлых элементов. В левой нижней части диаграммы находятся полностью проэволюционировавшие белые карлики .

Для наиболее известных звёзд:

Виды диаграммы

Существует несколько видов диаграммы, и их наименование не очень тщательно определено. Вначале диаграмма показывала спектральный класс звезды по горизонтальной оси и абсолютную звёздную величину по вертикальной. Спектральный тип сложно отображать на диаграмме, так как это не числовая величина, и современные версии диаграммы представляют здесь цветовой индекс B-V звёзд. Этот тип диаграммы часто называют диаграммой Герцшпрунга - Рассела или «цвет - звёздная величина», и он часто используется наблюдателями. Если звёзды находятся на близких одинаковых расстояниях (например звёзды скоплений), то диаграмма часто используется для описания скопления, и вертикальная ось становится просто звёздной величиной.

Ниже главной последовательности, начиная примерно от её середины, к правому нижнему углу тянется так называемая «последовательность (или ветвь) субкарликов» (на первой иллюстрации к статье не показана).

2024 med103.ru. Я самая красивая. Мода и стиль. Разные хитрости. Уход за лицом.