Представление о космологии. Особенности современной космологии

Космология - наука о закономерностях возникновения и развития Вселенной. Раздел космологии, где изучаются первые этапы развития вселенной, называется «космогония ».

Первые проекты возникли в рамках мифологии (возникновение вселенной и ее развитие - результат деятельности богов). В античной Греции модель мира – 1. сфера подмесячная (земная) – неупорядоченность, хаос; 2.-сфера небесная-упорядоченность, вечность, неизменность. Первой космологичной моделью современного типа принято считать созданную Альбертом Эйнштейном в 1916 г. (построена на теории относительности)– стационарная модель. В конце 20-х гг.- Эдвин Хаббл - галактики расходятся с тем большей скоростью, чем большее расстояние между ними (Вселенная расширяется ). «Красное смещение» в спектрах галактик (эффект Доплера). Красное смещение - при удалении от нас какого-либо источника колебаний, воспринимаемая вами частота колебаний уменьшается, а длина волны соответственно увеличивается. При излучении происходит «покраснение», т. е. линии спектра сдвигаются в сторону более длинных красных волн). В связи с феноменом расширения вселенной была выработана концепция "Большого взрыва ". Расширение началось с горячего и сжатого(критических) состояния. В процессе расширения универсум охлаждался и образовались структуры. Большинство астрофизиков приняло концепцию большого взрыва после того, как было найдено предсказанное на ее основехолодное излучение .

В соответствии с данными космологии , Вселенная возникла в результате взрывного процесса, получившего названиеБольшой взрыв , произошедшего около 14 млрд лет назад. Теория Большого взрыва хорошо согласуется с наблюдаемыми фактами (например,расширением Вселенной и преобладаниемводорода ) и позволила сделать верные предсказания, в частности, о существовании и параметрахреликтового излучения . В момент Большого взрыва Вселенная занимала микроскопические, квантовые размеры. В соответствии синфляционной моделью , в начальной стадии своей эволюции Вселенная пережила период ускоренного расширения (инфляции). Предполагается, что в этот момент Вселенная была «пустой и холодной» (существовало только высокоэнергетическое скалярное поле), а затем заполнилась горячим веществом, продолжавшим расширяться. О причинах Большого взрыва выдвинуто несколько гипотез. В соответствии с одной из них, взрыв порождёнфлуктуацией вакуума . Причина флуктуации -квантовые колебания. В результате флуктуации вакуум вышел из состояния равновесия, что привело к выделению энергии. Другая гипотеза, оперирующая в терминахтеории струн , предполагает некое внешнее по отношению к нашей Вселенной событие, например, столкновениебран вмногомерном пространстве . Некоторые физики допускают возможность множественности подобных процессов, а значит и множественность вселенных, обладающих разными свойствами. Ряд учёных выдвинули концепцию «кипящейМультивселенной », в которой непрерывно рождаются новые вселенные и у этого процесса нет начала и конца. Необходимо отметить, что сам факт Большого взрыва с высокой долей вероятности можно считать доказанным, но объяснения его причин и подробные описания того, как это происходило, пока относятся к разрядугипотез .

Согласно недавним теоретическим представлениям гравитационный коллапс должен завершиться сжатием вещества буквально «в точку» - до состояния бесконечной плотности. Это значит, что Вселенная возобновляет свое расширение не с нуля, а имея геометрически минимальный объем и физически приемлемое, регулярное состояние. Что же ожидает нашу Вселенную в будущем, если она будет неограниченно расширяться? По мере расширения пространства материя, становится все более разреженной, галактики и их скопления все более удаляются друг от друга, а температура фонового излучения приближается к абсолютному нулю. Со временем все звезды завершат свой жизненный цикл и превратятся либо в белых карликов, остывающих до состояния холодных черных карликов, либо в нейтронные звезды или черные дыры. Эра светящегося вещества закончится, и темные массы вещества, элементарные частицы и холодное излучение будут бессмысленно разлетаться в непрерывно разряжающейся пустоте. Впрочем, черные дыры не останутся без работы. Имея достаточно времени, черные дыры поглотят огромное количество вещества вселенной.

Ранние формы космологии представляли собой религиозные мифы о сотворении (космогония) и уничтожении (эсхатология) существующего мира.

Китай

Эпоха Возрождения

Новаторский характер носит космология Николая Кузанского , изложенная в трактате Об учёном незнании . Он предполагал материальное единство Вселенной и считал Землю одной из планет, также совершающей движение; небесные тела населены, как и наша Земля, причём каждый наблюдатель во Вселенной с равным основанием может считать себя неподвижным. По его мнению, Вселенная безгранична, но конечна, поскольку бесконечность может быть свойственна одному только Богу. Вместе с тем, у Кузанца сохраняются многие элементы средневековой космологии, в том числе вера в существование небесных сфер, включая внешнюю из них - сферу неподвижных звёзд. Однако эти «сферы» не являются абсолютно круглыми, их вращение не является равномерным, оси вращения не занимают фиксированного положения в пространстве. Вследствие этого у мира нет абсолютного центра и чёткой границы (вероятно, именно в этом смысле нужно понимать тезис Кузанца о безграничности Вселенной) .

Первая половина XVI века отмечена появлением новой, гелиоцентрической системы мира Николая Коперника. В центр мира Коперник поместил Солнце, вокруг которого вращались планеты (в числе которых и Земля, совершавшая к тому же ещё и вращение вокруг оси). Вселенную Коперник по-прежнему считал ограниченной сферой неподвижных звёзд; по-видимому, сохранялась у него и вера в существование небесных сфер .

Модификацией системы Коперника была система Томаса Диггеса , в которой звёзды располагаются не на одной сфере, а на различных расстояниях от Земли до бесконечности. Некоторые философы (Франческо Патрици , Ян Ессенский) заимствовали только один элемент учения Коперника - вращение Земли вокруг оси, также считая звёзды разбросанными во Вселенной до бесконечности. Воззрения этих мыслителей несут на себе следы влияния герметизма, поскольку область Вселенной за пределами Солнечной системы считалась ими нематериальным миром, местом обитания Бога и ангелов .

Решительный шаг от гелиоцентризма к бесконечной Вселенной, равномерно заполненной звёздами, сделал итальянский философ Джордано Бруно . Согласно Бруно, при наблюдении из всех точек Вселенная должна выглядеть примерно одинаково. Из всех мыслителей Нового времени он первым предположил, что звёзды - это далёкие солнца и что физические законы во всем бесконечном и безграничном пространстве одинаковы . В конце XVI века бесконечность Вселенной отстаивал и Уильям Гильберт . В середине - второй половине XVII века эти взгляды поддержали Рене Декарт , Отто фон Герике и Христиан Гюйгенс .

Возникновение современной космологии

Возникновение современной космологии связано с развитием в XX веке общей теории относительности (ОТО) Эйнштейна и физики элементарных частиц . Первое исследование на эту тему, опирающееся на ОТО, Эйнштейн опубликовал в 1917 году под названием «Космологические соображения к общей теории относительности». В ней он ввёл 3 предположения: Вселенная однородна, изотропна и стационарна. Чтобы обеспечить последнее требование, Эйнштейн ввёл в уравнения гравитационного поля дополнительный «космологический член ». Полученное им решение означало, что Вселенная имеет конечный объём (замкнута) и положительную кривизну .

Возраст Вселенной

Возраст Вселенной - время, прошедшее с момента Большого взрыва . Согласно современным научным данным (результаты WMAP 9), оно составляет 13,830 ± 0,075 млрд лет . Новые данные, полученные с помощью мощного телескопа-спутника «Планк» , принадлежащего Европейскому космическому агентству , показывают, что возраст Вселенной составляет 13,798 ± 0,037 миллиарда лет (68%-й доверительный интервал) .

Современная оценка возраста Вселенной построена на основе одной из распространённых моделей Вселенной, так называемой стандартной космологической ΛCDM-модели .

Основные этапы развития Вселенной

Большое значение для определения возраста Вселенной имеет периодизация основных протекавших во Вселенной процессов. В настоящее время принята следующая периодизация :

  • Самая ранняя эпоха, о которой существуют какие-либо теоретические предположения, - это планковское время (10 −43 после Большого взрыва). В это время гравитационное взаимодействие отделилось от остальных фундаментальных взаимодействий . По современным представлениям, эта эпоха квантовой космологии продолжалась до времени порядка 10 −11 с после Большого взрыва.
  • Следующая эпоха характеризуется рождением первоначальных частиц кварков и разделением видов взаимодействий. Эта эпоха продолжалась до времён порядка 10 −2 с после Большого взрыва. В настоящее время уже существуют возможности достаточно подробного физического описания процессов этого периода.
  • Современная эпоха стандартной космологии началась через 0,01 секунды после Большого взрыва и продолжается до сих пор. В этот период образовались ядра первичных элементов, возникли звёзды, галактики, Солнечная система .

Важной вехой в истории развития Вселенной в эту эпоху считается эра рекомбинации , когда материя расширяющейся Вселенной стала прозрачной для излучения. По современным представлениям, это произошло через 380 тыс. лет после Большого взрыва. В настоящее время это излучение мы можем наблюдать в виде реликтового фона , что является важнейшим экспериментальным подтверждением существующих моделей Вселенной.

WMAP

WMAP (Wilkinson Microwave Anisotropy Probe) - космический аппарат НАСА , предназначенный для изучения реликтового излучения , образовавшегося в результате Большого взрыва в момент зарождения Вселенной .

Собранная WMAP информация позволила учёным построить самую детальную на сегодняшний день карту флуктуаций температуры распределения микроволнового излучения на небесной сфере. Ранее подобную карту удалось построить по данным аппарата НАСА COBE , однако её разрешение существенно - в 35 раз - уступало данным, полученным WMAP.

Данные WMAP показали, что распределение температуры реликтового излучения по небесной сфере соответствует полностью случайным флуктуациям с нормальным распределением . Параметры функции, описывающей измеренное распределение, согласуются с моделью Вселенной, состоящей:

  • на 4 % из обычного вещества,
  • на 23 % из так называемой тёмной материи (возможно, из гипотетических тяжёлых суперсимметричных частиц) и
  • на 73 % из ещё более таинственной тёмной энергии , вызывающей ускоренное расширение Вселенной.

Данные WMAP позволяют утверждать, что тёмная материя является холодной (то есть состоит из тяжёлых частиц, а не из нейтрино или каких-либо других лёгких частиц). В противном случае лёгкие частицы, движущиеся с релятивистскими скоростями, размывали бы малые флуктуации плотности в ранней Вселенной.

Среди других параметров, из данных WMAP определены (исходя из ΛCDM -модели, то есть фридмановской космологической модели с Λ-членом и холодной тёмной материей англ. Cold Dark Matter ) :

  • возраст Вселенной : (13.73 ± 0.12)·10 9 лет;
  • постоянная Хаббла : 71 ± 4 км/с/Мпк ;
  • плотность барионов в настоящее время: (2,5 ± 0,1)·10 −7 см −3 ;
  • параметр плоскостности Вселенной (отношение общей плотности к критической): 1,02 ± 0,02;
  • суммарная масса всех трёх типов нейтрино : <0,7 эВ.

По данным обзора Planck TT, TE, EE+lensing+BAO+JLA+H0

  • 100θ MC = 1.04077 ± 0.00032
  • Ω b h 2 = 0.02225 ± 0.00016
  • Ω c h 2 = 0.1198 ± 0.0015
  • τ=0.079 ± 0.017
  • ln(10 10 As)=3.094 ± 0.034
  • n s = 0.9645 ± 0.0049
  • H 0 = 67.27 ± 0.66
  • Ω m =0.3089 ± 0.0062
  • Ω Λ = 0.6911 ± 0.0062
  • Σm v < 0.17
  • Ω k =0.0008 -0.0039 +0.0040
  • w= −1.019 -0.08 +0.075

См. также

Напишите отзыв о статье "Космология"

Примечания

  1. .
  2. , p. 103.
  3. .
  4. .
  5. О влиянии герметической литературы на Брадвардина см. работу .
  6. , с. 2-17 и особенно с. 14.
  7. .
  8. .
  9. , p. 105-106.
  10. .
  11. , с. 31-45.
  12. (англ.) . NASA . Goddard Space Flight Center. Проверено 22 марта 2013. .
  13. (англ.) .
  14. Planck Collaboration (англ.) // ArXiv/astro-ph. - 2013. - Bibcode : . - arXiv :1303.5076 .
  15. P. A. R. Ade et al . (Planck Collaboration) (22 March 2013). «». Astronomy and Astrophysics 1303 : 5062. arXiv :1303.5062 . DOI :10.1051/0004-6361/201321529 . Bibcode : .
  16. . .
  17. D.N. Spergel, R. Bean, O. Dore et al. .

Литература

  • Бакина В. И. Космологическое учение Гераклита Эфесского // Вестник Московского университета. Сер.7. Философия.. 1998.№ 4. С.42-55.
  • Бакина В. И. Космологические учения раннегреческих философов: Учеб. пособие. М., Изд-во Моск. ун-та. 1999. −104 с.
  • Вайнберг С. Первые три минуты: современный взгляд на происхождение Вселенной. - Ижевск: НИЦ «Регулярная и хаотическая динамика», 2000, 272 с. ISBN 5-93972-013-7
  • Гаврюшин Н. К. Византийская космология в XI веке // Историко-астрономические исследования . - М.: «Наука», 1983. Выпуск XVI. С.325-338.
  • Гаврюшин Н. К. Космологический трактат XV века как памятник древнерусского естествознания // Памятники науки и техники . 1981. М.: Наука, 1981, С. 183-197.
  • Лорен Грэхэм из книги
  • Житомирский С. В. Гелиоцентрическая гипотеза Аристарха Самосского и античная космология. // Историко-астрономические исследования. М., 1986. Вып. 18. С. 151-160.
  • Идлис Г. М. Революции в астрономии, физике и космологии. М., 1985.-232 с.
  • Койре А. От замкнутого мира к бесконечной вселенной: [пер. с англ. ]. - 2001. .
  • Космологические произведения в книжности Древней Руси. Ч. II: Тексты плоскостно-комарной и других космологических традиций" // Серия «Памятники древнерусской мысли». Вып. IV(2) / Отв. ред.: В. В. Мильков, С. М. Полянский. СПб.: Издат. дом «Міръ», 2008 (640 с. (50Б7 а.л.).
  • Лебедев А. В. Фалес и Ксенофан (Древнейшая фиксация космологии Фалеса) // Античная философия в интерпретации буржуазных философов. М., 1981.
  • Лупандин И. В. Аристотелевская космология и Фома Аквинский // Вопросы истории естествознания и техники . 1989. № 2. С.64-73.
  • Макеев В. А. Древняя философская космография в современной культуре стран Востока. -М.: РУДН, 1993
  • Мочалова И. Н. О двух космологических традициях в Ранней Академии // Вестник Ленинградского государственного университета имени А. С. Пушкина (серия философия). 2007.- № 3 (6).- С.26-34.
  • Нагирнер Д. И. Элементы космологии. - СПб.: Изд-во СПбГУ, 2001.
  • Павленко А. Н. Современная космология: проблема обоснования // Астрономия и научная картина мира. М. ИФРАН, 1996;
  • Павленко А. Н. Европейская космология: основания эпистемологического поворота, М.- ИНТРАДА, 1997;
  • Сажин М. В. Современная космология в популярном изложении. URSS. 2002. 240 с
  • Семушкин А. В. Умозрительный культ космоса в раннегреческой философии // Религия в изменяющемся мире. - М.: Изд-во РУДН, 1994. - С.27-39.
  • Турсунов А. Философия и современная космология. М., 1977.
  • М. Л. Фильченков, С. В. Копылов, В. С. Евдокимов Курс общей физики: дополнительные главы.
  • Фролов Б. Число в архаической космологии // Астрономия древних обществ. М., 2002.С.61-68.
  • Чернин А. Д. Звезды и физика. Изд.2. URSS. 2004. 176 с.
  • Barker P. . - Synthese. - 1990. - Т. 83, вып. 2. - P. 317-323.
  • C. Bonneau, S. Brunier. Une sonde defie l’espace et le temps. Science&Vie, № 1072, Janvier 2007, p. 43
  • Furley, David J. The Greek Theory of the Infinite Universe // Journal of the History of Ideas. - 1981. - Т. 42, № 4 (Oct. - Dec.). - P. 571–585. .
  • Gatti H. Giordano Bruno and Renaissance Science. - Cornell Univercity Press, 1999. .
  • Gombrich, R. F. «Ancient Indian Cosmology.» In Ancient Cosmologies, edited by Carmen Blacker and Michael Loewe, 110-142. London: Allen and Unwin, 1975.
  • Granada, Miguel A. Kepler and Bruno on the Infinity of the Universe and of Solar Systems // Journal for the History of Astronomy. - Т. 39, № 4. - P. 469-495.
  • Grant E. Medieval and Seventeenth-Century Conceptions of an Infinite Void Space Beyond the Cosmos // Isis. - 1969. - Т. 60, № 201. - P. 39-60. .
  • Grant E. Planets, Stars, and Orbs: The Medieval Cosmos, 1200-1687. - Cambridge, 1994. .
  • Henderson, John B. The Development and Decline of Chinese Cosmology. Neo-Confucian Studies Series. New York: Columbia University Press, 1984.-->
  • McColley G. The seventeenth-century doctrine of a plurality of worlds // Annals of Science. - 1936. - № 1. - P. 385–430. .
  • Sircar D.S. Cosmography and Cosmology in Early Indian Literature. Calcutta, 1976 (1 ed.: Calcutta,1967)

Ссылки

  • // modcos.com
  • Климушкин Д. Ю.
  • . . (англ.)
  • . .
  • проекта WMAP
  • // «Астронет»
  • А. Левин. // «Элементы»

Отрывок, характеризующий Космология

– Ах, да, – очнувшись, сказал Пьер, поспешно вставая. – Послушай, – сказал он, взяв Герасима за пуговицу сюртука и сверху вниз блестящими, влажными восторженными глазами глядя на старичка. – Послушай, ты знаешь, что завтра будет сражение?..
– Сказывали, – отвечал Герасим.
– Я прошу тебя никому не говорить, кто я. И сделай, что я скажу…
– Слушаюсь, – сказал Герасим. – Кушать прикажете?
– Нет, но мне другое нужно. Мне нужно крестьянское платье и пистолет, – сказал Пьер, неожиданно покраснев.
– Слушаю с, – подумав, сказал Герасим.
Весь остаток этого дня Пьер провел один в кабинете благодетеля, беспокойно шагая из одного угла в другой, как слышал Герасим, и что то сам с собой разговаривая, и ночевал на приготовленной ему тут же постели.
Герасим с привычкой слуги, видавшего много странных вещей на своем веку, принял переселение Пьера без удивления и, казалось, был доволен тем, что ему было кому услуживать. Он в тот же вечер, не спрашивая даже и самого себя, для чего это было нужно, достал Пьеру кафтан и шапку и обещал на другой день приобрести требуемый пистолет. Макар Алексеевич в этот вечер два раза, шлепая своими калошами, подходил к двери и останавливался, заискивающе глядя на Пьера. Но как только Пьер оборачивался к нему, он стыдливо и сердито запахивал свой халат и поспешно удалялся. В то время как Пьер в кучерском кафтане, приобретенном и выпаренном для него Герасимом, ходил с ним покупать пистолет у Сухаревой башни, он встретил Ростовых.

1 го сентября в ночь отдан приказ Кутузова об отступлении русских войск через Москву на Рязанскую дорогу.
Первые войска двинулись в ночь. Войска, шедшие ночью, не торопились и двигались медленно и степенно; но на рассвете двигавшиеся войска, подходя к Дорогомиловскому мосту, увидали впереди себя, на другой стороне, теснящиеся, спешащие по мосту и на той стороне поднимающиеся и запружающие улицы и переулки, и позади себя – напирающие, бесконечные массы войск. И беспричинная поспешность и тревога овладели войсками. Все бросилось вперед к мосту, на мост, в броды и в лодки. Кутузов велел обвезти себя задними улицами на ту сторону Москвы.
К десяти часам утра 2 го сентября в Дорогомиловском предместье оставались на просторе одни войска ариергарда. Армия была уже на той стороне Москвы и за Москвою.
В это же время, в десять часов утра 2 го сентября, Наполеон стоял между своими войсками на Поклонной горе и смотрел на открывавшееся перед ним зрелище. Начиная с 26 го августа и по 2 е сентября, от Бородинского сражения и до вступления неприятеля в Москву, во все дни этой тревожной, этой памятной недели стояла та необычайная, всегда удивляющая людей осенняя погода, когда низкое солнце греет жарче, чем весной, когда все блестит в редком, чистом воздухе так, что глаза режет, когда грудь крепнет и свежеет, вдыхая осенний пахучий воздух, когда ночи даже бывают теплые и когда в темных теплых ночах этих с неба беспрестанно, пугая и радуя, сыплются золотые звезды.
2 го сентября в десять часов утра была такая погода. Блеск утра был волшебный. Москва с Поклонной горы расстилалась просторно с своей рекой, своими садами и церквами и, казалось, жила своей жизнью, трепеща, как звезды, своими куполами в лучах солнца.
При виде странного города с невиданными формами необыкновенной архитектуры Наполеон испытывал то несколько завистливое и беспокойное любопытство, которое испытывают люди при виде форм не знающей о них, чуждой жизни. Очевидно, город этот жил всеми силами своей жизни. По тем неопределимым признакам, по которым на дальнем расстоянии безошибочно узнается живое тело от мертвого. Наполеон с Поклонной горы видел трепетание жизни в городе и чувствовал как бы дыханио этого большого и красивого тела.
– Cette ville asiatique aux innombrables eglises, Moscou la sainte. La voila donc enfin, cette fameuse ville! Il etait temps, [Этот азиатский город с бесчисленными церквами, Москва, святая их Москва! Вот он, наконец, этот знаменитый город! Пора!] – сказал Наполеон и, слезши с лошади, велел разложить перед собою план этой Moscou и подозвал переводчика Lelorgne d"Ideville. «Une ville occupee par l"ennemi ressemble a une fille qui a perdu son honneur, [Город, занятый неприятелем, подобен девушке, потерявшей невинность.] – думал он (как он и говорил это Тучкову в Смоленске). И с этой точки зрения он смотрел на лежавшую перед ним, невиданную еще им восточную красавицу. Ему странно было самому, что, наконец, свершилось его давнишнее, казавшееся ему невозможным, желание. В ясном утреннем свете он смотрел то на город, то на план, проверяя подробности этого города, и уверенность обладания волновала и ужасала его.
«Но разве могло быть иначе? – подумал он. – Вот она, эта столица, у моих ног, ожидая судьбы своей. Где теперь Александр и что думает он? Странный, красивый, величественный город! И странная и величественная эта минута! В каком свете представляюсь я им! – думал он о своих войсках. – Вот она, награда для всех этих маловерных, – думал он, оглядываясь на приближенных и на подходившие и строившиеся войска. – Одно мое слово, одно движение моей руки, и погибла эта древняя столица des Czars. Mais ma clemence est toujours prompte a descendre sur les vaincus. [царей. Но мое милосердие всегда готово низойти к побежденным.] Я должен быть великодушен и истинно велик. Но нет, это не правда, что я в Москве, – вдруг приходило ему в голову. – Однако вот она лежит у моих ног, играя и дрожа золотыми куполами и крестами в лучах солнца. Но я пощажу ее. На древних памятниках варварства и деспотизма я напишу великие слова справедливости и милосердия… Александр больнее всего поймет именно это, я знаю его. (Наполеону казалось, что главное значение того, что совершалось, заключалось в личной борьбе его с Александром.) С высот Кремля, – да, это Кремль, да, – я дам им законы справедливости, я покажу им значение истинной цивилизации, я заставлю поколения бояр с любовью поминать имя своего завоевателя. Я скажу депутации, что я не хотел и не хочу войны; что я вел войну только с ложной политикой их двора, что я люблю и уважаю Александра и что приму условия мира в Москве, достойные меня и моих народов. Я не хочу воспользоваться счастьем войны для унижения уважаемого государя. Бояре – скажу я им: я не хочу войны, а хочу мира и благоденствия всех моих подданных. Впрочем, я знаю, что присутствие их воодушевит меня, и я скажу им, как я всегда говорю: ясно, торжественно и велико. Но неужели это правда, что я в Москве? Да, вот она!»
– Qu"on m"amene les boyards, [Приведите бояр.] – обратился он к свите. Генерал с блестящей свитой тотчас же поскакал за боярами.
Прошло два часа. Наполеон позавтракал и опять стоял на том же месте на Поклонной горе, ожидая депутацию. Речь его к боярам уже ясно сложилась в его воображении. Речь эта была исполнена достоинства и того величия, которое понимал Наполеон.
Тот тон великодушия, в котором намерен был действовать в Москве Наполеон, увлек его самого. Он в воображении своем назначал дни reunion dans le palais des Czars [собраний во дворце царей.], где должны были сходиться русские вельможи с вельможами французского императора. Он назначал мысленно губернатора, такого, который бы сумел привлечь к себе население. Узнав о том, что в Москве много богоугодных заведений, он в воображении своем решал, что все эти заведения будут осыпаны его милостями. Он думал, что как в Африке надо было сидеть в бурнусе в мечети, так в Москве надо было быть милостивым, как цари. И, чтобы окончательно тронуть сердца русских, он, как и каждый француз, не могущий себе вообразить ничего чувствительного без упоминания о ma chere, ma tendre, ma pauvre mere, [моей милой, нежной, бедной матери,] он решил, что на всех этих заведениях он велит написать большими буквами: Etablissement dedie a ma chere Mere. Нет, просто: Maison de ma Mere, [Учреждение, посвященное моей милой матери… Дом моей матери.] – решил он сам с собою. «Но неужели я в Москве? Да, вот она передо мной. Но что же так долго не является депутация города?» – думал он.
Между тем в задах свиты императора происходило шепотом взволнованное совещание между его генералами и маршалами. Посланные за депутацией вернулись с известием, что Москва пуста, что все уехали и ушли из нее. Лица совещавшихся были бледны и взволнованны. Не то, что Москва была оставлена жителями (как ни важно казалось это событие), пугало их, но их пугало то, каким образом объявить о том императору, каким образом, не ставя его величество в то страшное, называемое французами ridicule [смешным] положение, объявить ему, что он напрасно ждал бояр так долго, что есть толпы пьяных, но никого больше. Одни говорили, что надо было во что бы то ни стало собрать хоть какую нибудь депутацию, другие оспаривали это мнение и утверждали, что надо, осторожно и умно приготовив императора, объявить ему правду.
– Il faudra le lui dire tout de meme… – говорили господа свиты. – Mais, messieurs… [Однако же надо сказать ему… Но, господа…] – Положение было тем тяжеле, что император, обдумывая свои планы великодушия, терпеливо ходил взад и вперед перед планом, посматривая изредка из под руки по дороге в Москву и весело и гордо улыбаясь.
– Mais c"est impossible… [Но неловко… Невозможно…] – пожимая плечами, говорили господа свиты, не решаясь выговорить подразумеваемое страшное слово: le ridicule…
Между тем император, уставши от тщетного ожидания и своим актерским чутьем чувствуя, что величественная минута, продолжаясь слишком долго, начинает терять свою величественность, подал рукою знак. Раздался одинокий выстрел сигнальной пушки, и войска, с разных сторон обложившие Москву, двинулись в Москву, в Тверскую, Калужскую и Дорогомиловскую заставы. Быстрее и быстрее, перегоняя одни других, беглым шагом и рысью, двигались войска, скрываясь в поднимаемых ими облаках пыли и оглашая воздух сливающимися гулами криков.
Увлеченный движением войск, Наполеон доехал с войсками до Дорогомиловской заставы, но там опять остановился и, слезши с лошади, долго ходил у Камер коллежского вала, ожидая депутации.

Москва между тем была пуста. В ней были еще люди, в ней оставалась еще пятидесятая часть всех бывших прежде жителей, но она была пуста. Она была пуста, как пуст бывает домирающий обезматочивший улей.
В обезматочившем улье уже нет жизни, но на поверхностный взгляд он кажется таким же живым, как и другие.
Так же весело в жарких лучах полуденного солнца вьются пчелы вокруг обезматочившего улья, как и вокруг других живых ульев; так же издалека пахнет от него медом, так же влетают и вылетают из него пчелы. Но стоит приглядеться к нему, чтобы понять, что в улье этом уже нет жизни. Не так, как в живых ульях, летают пчелы, не тот запах, не тот звук поражают пчеловода. На стук пчеловода в стенку больного улья вместо прежнего, мгновенного, дружного ответа, шипенья десятков тысяч пчел, грозно поджимающих зад и быстрым боем крыльев производящих этот воздушный жизненный звук, – ему отвечают разрозненные жужжания, гулко раздающиеся в разных местах пустого улья. Из летка не пахнет, как прежде, спиртовым, душистым запахом меда и яда, не несет оттуда теплом полноты, а с запахом меда сливается запах пустоты и гнили. У летка нет больше готовящихся на погибель для защиты, поднявших кверху зады, трубящих тревогу стражей. Нет больше того ровного и тихого звука, трепетанья труда, подобного звуку кипенья, а слышится нескладный, разрозненный шум беспорядка. В улей и из улья робко и увертливо влетают и вылетают черные продолговатые, смазанные медом пчелы грабительницы; они не жалят, а ускользают от опасности. Прежде только с ношами влетали, а вылетали пустые пчелы, теперь вылетают с ношами. Пчеловод открывает нижнюю колодезню и вглядывается в нижнюю часть улья. Вместо прежде висевших до уза (нижнего дна) черных, усмиренных трудом плетей сочных пчел, держащих за ноги друг друга и с непрерывным шепотом труда тянущих вощину, – сонные, ссохшиеся пчелы в разные стороны бредут рассеянно по дну и стенкам улья. Вместо чисто залепленного клеем и сметенного веерами крыльев пола на дне лежат крошки вощин, испражнения пчел, полумертвые, чуть шевелящие ножками и совершенно мертвые, неприбранные пчелы.
Пчеловод открывает верхнюю колодезню и осматривает голову улья. Вместо сплошных рядов пчел, облепивших все промежутки сотов и греющих детву, он видит искусную, сложную работу сотов, но уже не в том виде девственности, в котором она бывала прежде. Все запущено и загажено. Грабительницы – черные пчелы – шныряют быстро и украдисто по работам; свои пчелы, ссохшиеся, короткие, вялые, как будто старые, медленно бродят, никому не мешая, ничего не желая и потеряв сознание жизни. Трутни, шершни, шмели, бабочки бестолково стучатся на лету о стенки улья. Кое где между вощинами с мертвыми детьми и медом изредка слышится с разных сторон сердитое брюзжание; где нибудь две пчелы, по старой привычке и памяти очищая гнездо улья, старательно, сверх сил, тащат прочь мертвую пчелу или шмеля, сами не зная, для чего они это делают. В другом углу другие две старые пчелы лениво дерутся, или чистятся, или кормят одна другую, сами не зная, враждебно или дружелюбно они это делают. В третьем месте толпа пчел, давя друг друга, нападает на какую нибудь жертву и бьет и душит ее. И ослабевшая или убитая пчела медленно, легко, как пух, спадает сверху в кучу трупов. Пчеловод разворачивает две средние вощины, чтобы видеть гнездо. Вместо прежних сплошных черных кругов спинка с спинкой сидящих тысяч пчел и блюдущих высшие тайны родного дела, он видит сотни унылых, полуживых и заснувших остовов пчел. Они почти все умерли, сами не зная этого, сидя на святыне, которую они блюли и которой уже нет больше. От них пахнет гнилью и смертью. Только некоторые из них шевелятся, поднимаются, вяло летят и садятся на руку врагу, не в силах умереть, жаля его, – остальные, мертвые, как рыбья чешуя, легко сыплются вниз. Пчеловод закрывает колодезню, отмечает мелом колодку и, выбрав время, выламывает и выжигает ее.
Так пуста была Москва, когда Наполеон, усталый, беспокойный и нахмуренный, ходил взад и вперед у Камерколлежского вала, ожидая того хотя внешнего, но необходимого, по его понятиям, соблюдения приличий, – депутации.
В разных углах Москвы только бессмысленно еще шевелились люди, соблюдая старые привычки и не понимая того, что они делали.
Когда Наполеону с должной осторожностью было объявлено, что Москва пуста, он сердито взглянул на доносившего об этом и, отвернувшись, продолжал ходить молча.
– Подать экипаж, – сказал он. Он сел в карету рядом с дежурным адъютантом и поехал в предместье.
– «Moscou deserte. Quel evenemeDt invraisemblable!» [«Москва пуста. Какое невероятное событие!»] – говорил он сам с собой.
Он не поехал в город, а остановился на постоялом дворе Дорогомиловского предместья.
Le coup de theatre avait rate. [Не удалась развязка театрального представления.]

Русские войска проходили через Москву с двух часов ночи и до двух часов дня и увлекали за собой последних уезжавших жителей и раненых.
Самая большая давка во время движения войск происходила на мостах Каменном, Москворецком и Яузском.
В то время как, раздвоившись вокруг Кремля, войска сперлись на Москворецком и Каменном мостах, огромное число солдат, пользуясь остановкой и теснотой, возвращались назад от мостов и украдчиво и молчаливо прошныривали мимо Василия Блаженного и под Боровицкие ворота назад в гору, к Красной площади, на которой по какому то чутью они чувствовали, что можно брать без труда чужое. Такая же толпа людей, как на дешевых товарах, наполняла Гостиный двор во всех его ходах и переходах. Но не было ласково приторных, заманивающих голосов гостинодворцев, не было разносчиков и пестрой женской толпы покупателей – одни были мундиры и шинели солдат без ружей, молчаливо с ношами выходивших и без ноши входивших в ряды. Купцы и сидельцы (их было мало), как потерянные, ходили между солдатами, отпирали и запирали свои лавки и сами с молодцами куда то выносили свои товары. На площади у Гостиного двора стояли барабанщики и били сбор. Но звук барабана заставлял солдат грабителей не, как прежде, сбегаться на зов, а, напротив, заставлял их отбегать дальше от барабана. Между солдатами, по лавкам и проходам, виднелись люди в серых кафтанах и с бритыми головами. Два офицера, один в шарфе по мундиру, на худой темно серой лошади, другой в шинели, пешком, стояли у угла Ильинки и о чем то говорили. Третий офицер подскакал к ним.
– Генерал приказал во что бы то ни стало сейчас выгнать всех. Что та, это ни на что не похоже! Половина людей разбежалась.
– Ты куда?.. Вы куда?.. – крикнул он на трех пехотных солдат, которые, без ружей, подобрав полы шинелей, проскользнули мимо него в ряды. – Стой, канальи!
– Да, вот извольте их собрать! – отвечал другой офицер. – Их не соберешь; надо идти скорее, чтобы последние не ушли, вот и всё!
– Как же идти? там стали, сперлися на мосту и не двигаются. Или цепь поставить, чтобы последние не разбежались?
– Да подите же туда! Гони ж их вон! – крикнул старший офицер.
Офицер в шарфе слез с лошади, кликнул барабанщика и вошел с ним вместе под арки. Несколько солдат бросилось бежать толпой. Купец, с красными прыщами по щекам около носа, с спокойно непоколебимым выражением расчета на сытом лице, поспешно и щеголевато, размахивая руками, подошел к офицеру.
– Ваше благородие, – сказал он, – сделайте милость, защитите. Нам не расчет пустяк какой ни на есть, мы с нашим удовольствием! Пожалуйте, сукна сейчас вынесу, для благородного человека хоть два куска, с нашим удовольствием! Потому мы чувствуем, а это что ж, один разбой! Пожалуйте! Караул, что ли, бы приставили, хоть запереть дали бы…
Несколько купцов столпилось около офицера.
– Э! попусту брехать то! – сказал один из них, худощавый, с строгим лицом. – Снявши голову, по волосам не плачут. Бери, что кому любо! – И он энергическим жестом махнул рукой и боком повернулся к офицеру.

Космология изучает происхождение и процесс развития и эволюции Вселенной. Изучите основы, проблемы и принципы современной космологии и астрофизики Вселенной.

То есть, эта наука (астрофизика, астрономия, геология, физика и климатология) прослеживает развитие пространства от Большого Взрыва и даже пытается смоделировать будущее.

Космологи рассматривают довольно экзотические и непривычные концепции, а объекты космологии включают темную материю и темную энергию, теорию струн, количество вселенных. Если другие аспекты астрономии изучают определенные явления, то современная космология Вселенной старается охватить масштабную картинку.

История космологии и астрономии

Основы и теории космологии не появились на пустом месте. Разумеется, с развитием человечества наше понимание пространства также эволюционировало. Сначала Земля воспринималась как центр и начало всего, а прочие объекты либо просто закреплены на своих неподвижных позициях, либо же вращаются вокруг. Все изменилось с приходом Николая Коперника в 16 веке, выдвинувшем гелиоцентрическую систему, объясняющую, что мы лишь часть масштабной Вселенной и расположены далеко не в центре. Но это не единственный ученый, которого выдвинула космология.

В 17 веке Исаак Ньютон интересовался силами, возникающими между планетами, и пришел к гравитации. В 20-м веке всех шокировал Альберт Эйнштейн своей общей теорией относительности. В 1900-х гг. люди задумались о размере Вселенной. То есть, все ограничивается Млечным Путем или есть что-то дальше?

Новый шаг сделал Эдвин Хаббл. Он исследовал далекое туманное пятно и понял, что оно расположено за пределами нашей галактики! Также он выяснил, что эти объекты выступают галактиками, которые отдаляются от нас, а значит, пространство не статично, оно расширяется (расширяющаяся Вселенная).

Современный популярный физик-теоретик Стивен Хокинг полагает, что у Вселенной есть конец, а значит и размер. Однако, нам никогда не увидеть ее границу. Это похоже на ситуацию с нашей планетой: можно обойти ее по кругу, но вы вернетесь на старт. Также Хокинг считает, что расширение продолжится вечно, пока не закончится.

Что существовало до Большого Взрыва?

Теория космологии утверждает, что пространство началось с Большого Взрыва. Есть мнение, что существуют и другие вселенные, однако нет практического способа их «увидеть», поэтому пока можно лишь сказать, что до Большого Взрыва не было ничего.

Где произошло это событие?

Нет определенной точки, так как до того ничего не существовало. Большой Взрыв просто произошел.

Если другие галактики отходят от нас, то не стоим ли мы в центре Вселенной?

Нет. Если вы окажитесь в другой галактике, то заметите, что остальные отдаляются уже от этой. Наша Вселенная как воздушный шар. Надуйте и взорвите его. Ни одна из точек не будет располагаться в центре, они все просто расширяются.

Сколько Вселенной лет?

Возраст Вселенной составляет 13.7 миллиардов лет (+/- 100 миллионов).

У Вселенной есть конец?

Все зависит от ее плотности. Ученым удалось вычислить критическое число. Если истинная плотность превышает его, то расширение приостановится и пространство начнет сжиматься, пока не вернется в изначальную точку. Если же показатель меньше, то мы получим вечное расширение.

Что было первым: галактика или звезды?

Классическая космология гласит, что после Большого Взрыва пространство представляло собою скопление водорода и немного гелия. Гравитация заставила водород сжиматься и создавать структуры. Но ученые точно не знают механизма формирования. Возможно, сначала создались звезды, которые объединились в галактики, или же это были массивные галактические глыбы, внутри которых начали появляться звезды. Основы современной космологии и развитие ее теорий и принципов раскрываются в видео, смотреть которые можно бесплатно онлайн на нашем сайте.

Наблюдательные тесты космологии и стандартный спектр

Астрофизик Олег Верходанов о красном смещении, расширяющейся Вселенной и построении углового спектра мощности:

Нестыковки в космологии

Астрофизик Олег Верходанов о темной энергии, постоянной Хаббла и расширяющейся Вселенной:

Стандартная космологическая модель

Астрофизик Олег Верходанов об угловом спектре мощности, холодной темной материи и измерении космологических параметров:

Гравитация

Космолог Мартин Рис об истории изучения гравитации, теориях Ньютона и Эйнштейна и поиске черных дыр:

Картина мира за один час

Астрофизик Сергей Попов о всеволновой астрономии, современных телескопах и строении Вселенной:

Движение небесных тел: гравитация и приливы

Астроном Владимир Сурдин о движении тел под действием гравитации, конических сечениях и теории приливов:

Что нового открыли в космосе

Астрофизик Сергей Попов о внегалактической астрономии, исследованиях экзопланет и теориях гравитации:

Роль нейтрино в космологии

Физик Дмитрий Горбунов о массе нейтрино, эволюции ранней Вселенной и измерении реликтового излучения:

Современная космология - это раздел астрономии, в котором объединены данные физики и математики, а также универсальные философские принципы, поэтому она представляет собой синтез научных и философских знаний. Такой синтез в космологии необходим, поскольку размышления о происхождении и устройстве Вселенной эмпирически трудно проверяемы и чаще всего существуют в виде теоретических гипотез или математических моделей. Космологические исследования обычно развиваются от теории к практике, от модели к эксперименту, и здесь исходные философские и общенаучные установки приобретают большое значение. По этой причине космологические модели существенно различаются между собой - в их основе зачастую лежат противоположные исходные философские принципы. В свою очередь, любые космологические выводы также влияют на общефилософские представления об устройстве Вселенной, т.е. изменяют фундаментальные представления человека о мире и самом себе.

Важнейший постулат современной космологии заключается в том, что законы природы, установленные на основе изучения весьма ограниченной части Вселенной, могут быть экстраполированы на гораздо более широкие области, а в конечном счете и на всю Вселенную. Космологические теории различаются в зависимости от того, какие физические принципы и законы положены в их основу. Построенные на их базе модели должны допускать проверку для наблюдаемой области Вселенной, а выводы теории - подтверждаться наблюдениями или во всяком случае не противоречить им.

Уже древние мудрецы задавались вопросом о происхождении и устройстве Вселенной. Их взгляды и идеи были неотъемлемым компонентом философских систем древности. Эти первые космологические идеи, сохранившиеся до наших дней в виде мифов, основывались на астрономических наблюдениях. Жрецам Вавилона, Египта, Индии и Китая удалось точно вычислить продолжительность года, повторяемость солнечных и лунных затмений. Наблюдая за небесными телами, они смогли выявить две группы небесных тел: подвижные и неподвижные. Множество звезд долгое время считались неподвижными объектами. К числу подвижных тел относились Луна, Солнце и пять известных в то время планет, названных именами богов (впервые это было сделано в Вавилоне, сегодня же мы используем в качестве названий планет имена римских богов) - Меркурий, Венера, Марс, Юпитер и Сатурн. В их честь неделя была разделена на семь дней, каждый из которых в существующей и сегодня астрологической традиции связан с одним из подвижных тел. Из наблюдения видимого движения Солнца по небесной сфере были открыты двенадцать так называемых зодиакальных созвездий.

После того как появилась философия, пришедшая вместе с наукой на смену мифологии, ответ на «вечные» вопросы стали искать в основном в рамках философских концепций. В античности появилось несколько интересных космологических моделей Вселенной, принадлежащих Пифагору, Демокриту, Платону. Тогда же возникли и первые гелиоцентрические модели Вселенной. Так, Гераклид Понтийский признавал суточное вращение Земли и ее движение вокруг покоящегося Солнца. Аристарх Самосский выдвигал идею о том, что Земля вращается по окружности, центром которой служит Солнце. Но гелиоцентрические идеи были отвергнуты большинством античных мыслителей, и общепризнанным итогом античной космологии стала геоцентрическая концепция, сформулированная Аристотелем и усовершенствованная Птолемеем. Данная модель просуществовала в течение всего Средневековья. Она была очень сложной, так как для компенсации видимого движения планет, совершающих петлеобразные движения, пришлось ввести систему деферентов и эпициклов.


С приходом Нового времени философия уступила свое первенство в создании космологических моделей науке, которая добилась особенно больших успехов в XX в., перейдя от различных догадок к достаточно обоснованным фактам, гипотезам и теориям. Первым результатом стало появление в XVI в. гелиоцентрической модели Вселенной, автором которой стал Николай Коперник. В этой модели Вселенная все еще представляла собой замкнутую сферу, в центре которой находилось Солнце, а вокруг него вращались планеты, в том числе и Земля.

Успехи космологии и космогонии в XVIII-XIX вв. завершились созданием классической полицентрической картины мира, ставшей начальным этапом развития научной космологии. Данная модель достаточно проста и понятна. Вселенная считается бесконечной в пространстве и во времени, иными словами, вечной. Основным законом, управляющим движением и развитием небесных тел, является закон всемирного тяготения. Пространство никак не связано с находящимися в нем телами, играя пассивную роль вместилища для этих тел. Время также не зависит от материи, являясь универсальной длительностью всех природных явлений и тел. Исчезни вдруг все тела, пространство и время сохранились бы неизменными. Количество звезд, планет и звездных систем во Вселенной бесконечно велико. Каждое небесное тело проходит длительный жизненный путь. На смену погибшим, точнее, погасшим, звездам приходят новые, молодые светила. Хотя детали возникновения и гибели небесных тел оставались неясными, в основном эта модель казалась стройной и логически непротиворечивой. В таком виде классическая полицентрическая модель просуществовала в науке вплоть до начала XX в.

Однако в данной модели Вселенной было несколько недостатков. Закон всемирного тяготения объяснял центростремительное ускорение планет, но не говорил, откуда взялось стремление планет, а также любых материальных тел двигаться равномерно и прямолинейно. Для объяснения инерциального движения пришлось допустить существование в ней божественного «первотолчка», приведшего в движение все материальные тела. Кроме того, для коррекции орбит космических тел также допускалось вмешательство Бога. Таким образом, классическая полицентрическая модель Вселенной лишь частично носила научный характер, она не смогла дать научного объяснения происхождения Вселенной и поэтому была.

Новая модель Вселенной была создана в 1917 г. А. Эйнштейном. Ее основу составила релятивистская теория тяготения - общая теория относительности. Эйнштейн отказался от постулатов абсолютности и бесконечности пространства и времени, однако сохранил принцип стационарности, неизменности Вселенной во времени и ее конечности в пространстве. Свойства Вселенной, по мнению Эйнштейна, определяются распределением в ней гравитационных масс, Вселенная безгранична, но при этом замкнута в пространстве. Согласно этой модели, пространство однородно и изотропно, т.е. во всех направлениях имеет одинаковые свойства, материя распределена в нем равномерно, время бесконечно, а его течение не влияет на свойства Вселенной. На основании проведенных расчетов Эйнштейн сделал вывод, что мировое пространство представляет собой четырехмерную сферу.

При этом не следует представлять себе данную модель Вселенной в виде обычной сферы. Сферическое пространство есть сфера, но сфера четырехмерная, не поддающаяся наглядному представлению. По аналогии можно сделать вывод, что объем такого пространства конечен, как конечна поверхность любого шара, ее можно выразить конечным числом квадратных сантиметров. Поверхность всякой четырехмерной сферы также выражается конечным числом кубометров. Такое сферическое пространство не имеет границ, и в этом смысле оно безгранично. Летя в таком пространстве в одном направлении, мы в конце концов вернемся в исходную точку. Но в то же время муха, ползущая по поверхности шара, нигде не найдет границ и преград, запрещающих ей двигаться в любом избранном направлении. В этом смысле поверхность любого шара безгранична, хотя и конечна, т.е. безграничность и бесконечность - это разные понятия.

Итак, из расчетов Эйнштейна следовало, что наш мир является четырехмерной сферой. Объем такой Вселенной может быть выражен хотя и очень большим, но все же конечным числом кубометров. В принципе можно облететь всю замкнутую Вселенную, двигаясь все время в одном направлении. Такое воображаемое путешествие подобно земным кругосветным путешествиям. Но конечная по объему Вселенная в то же время безгранична, как не имеет границ поверхность любой сферы. Вселенная Эйнштейна содержит хотя и большое, но все же конечное число звезд и звездных систем, а поэтому к ней неприменимы фотометрический и гравитационный парадоксы. В то же время призрак тепловой смерти тяготеет и над Вселенной Эйнштейна. Такая Вселенная, конечная в пространстве, неизбежно идет к своему концу во времени. Вечность ей не присуща.

Таким образом, несмотря на новизну и даже революционность идей, Эйнштейн в своей космологической теории ориентировался на привычную классическую мировоззренческую установку статичности мира. Его более привлекал гармоничный и устойчивый мир, нежели мир противоречивый и неустойчивый.

Модель Вселенной Эйнштейна стала первой космологической моделью, базирующейся на выводах общей теории относительности. Это связано с тем, что именно тяготение определяет взаимодействие масс на больших расстояниях. Поэтому теоретическим ядром современной космологии выступает теория тяготения - общая теория относительности. Эйнштейн допускал в своей космологической модели наличие некой гипотетической отталкивающей силы, которая должна была обеспечить стационарность, неизменность Вселенной. Однако последующее развитие естествознания внесло существенные коррективы в это представление.

Пять лет спустя, в 1922 г., советский физик и математик А. Фридман на основе строгих расчетов показал, что Вселенная Эйнштейна не может быть стационарной, неизменной. При этом Фридман опирался на сформулированный им космологический принцип, который строится на двух предположениях: об изотропности и однородности Вселенной. Изотропность Вселенной понимается как отсутствие выделенных направлений, одинаковость Вселенной по всем направлениям. Однородность Вселенной понимается как одинаковость всех точек Вселенной: мы можем проводить наблюдения в любой из них и везде увидим изотропную Вселенную.

Фридман на основе космологического принципа доказал, что уравнения Эйнштейна имеют и другие, нестационарные решения, согласно которым Вселенная может либо расширяться, либо сжиматься. При этом речь шла о расширении самого пространства, т.е. об увеличении всех расстояний мира. Вселенная Фридмана напоминала раздувающийся мыльный пузырь, у которого и радиус, и площадь поверхности непрерывно увеличиваются.

Первоначально модель расширяющейся Вселенной носила гипотетический характер и не имела эмпирического подтверждения. Однако в 1929 г. американский астроном Э. Хаббл обнаружил эффект «красного смещения» спектральных линий (смещение линий к красному концу спектра). Это было истолковано как следствие эффекта Допплера - изменение частоты колебаний или длины волн из-за движения источника волн и наблюдателя по отношению друг к другу. «Красное смещение» было объяснено как следствие удаления галактик друг от друга со скоростью, возрастающей с расстоянием. Хаббл в 1929 г. вывел прямую линию на графике зависимости скоростей далеких галактик от расстояния до них, сформулировав так называемый закон Хаббла : согласно ему, скорости удаления v галактик возрастают пропорционально расстоянию до них: v= Н r, где Н - постоянная Хаббла. Сейчас считается, что H = 75 км/(с Мпк). Согласно последним измерениям увеличение скорости расширения составляет примерно 55 км/с на каждый миллион парсек.

В результате своих наблюдений Хаббл обосновал представление, что Вселенная - это мир галактик, что наша Галактика - не единственная в ней, что существует множество галактик, разделенных между собой огромными расстояниями. Вместе с тем Хаббл пришел к выводу, что межгалактические расстояния не остаются постоянными, а увеличиваются. Таким образом, в естествознании появилась концепция расширяющейся Вселенной.

Какое же будущее ждет нашу Вселенную? Фридман предложил три модели развития Вселенной.

В первой модели Вселенная расширяется медленно для того, чтобы в силу гравитационного притяжения между различными галактиками расширение Вселенной замедлялось и в конце концов прекращалось. После этого Вселенная начинала сжиматься. В этой модели пространство искривляется, замыкаясь на себя, образуя сферу.

Во второй модели Вселенная расширялась бесконечно, а пространство искривлено как поверхность седла и при этом бесконечно.

В третьей модели Фридмана пространство плоское и тоже бесконечное.

По какому из этих трех вариантов идет эволюция Вселенной, зависит от отношения гравитационной энергии к кинетической энергии разлетающегося вещества.

Если кинетическая энергия разлета вещества преобладает над гравитационной энергией, препятствующей разлету, то силы тяготения не остановят разбегания галактик, и расширение Вселенной будет носить необратимый характер. Этот вариант динамичной модели Вселенной называют открытой Вселенной.

Если же преобладает гравитационное взаимодействие, то темп расширения со временем замедлится до полной остановки, после чего начнется сжатие вещества вплоть до возврата Вселенной в исходное состояние сингулярности (точечный объем с бесконечно большой плотностью). Такой вариант модели назван осциллирующей, или закрытой, Вселенной.

В граничном случае, когда силы гравитации точно равны энергии разлета вещества, расширение не прекратится, но его скорость со временем будет стремиться к нулю. Через несколько десятков миллиардов лет после начала расширения Вселенной наступит состояние, которое можно назвать квазистационарным. Теоретически возможна и пульсация Вселенной.

Наблюдаемое нами разбегание галактик есть следствие расширения пространства замкнутой конечной Вселенной. При таком расширении пространства все расстояния во Вселенной увеличиваются подобно тому, как растут расстояния между пылинками на поверхности раздувающегося мыльного пузыря. Каждую из таких пылинок, как и каждую из галактик, можно с полным правом считать центром расширения. Когда Э. Хаббл показал, что далекие галактики разбегаются друг от друга со все возрастающей скоростью, был сделан однозначный вывод о том, что наша Вселенная расширяется. Но расширяющаяся Вселенная - это изменяющаяся Вселенная, мир со всей своей историей, имеющий начало и конец. Постоянная Хаббла позволяет оценить время, в течение которого продолжается процесс расширения Вселенной. Получается, что оно не менее 10 млрд. и не более 19 млрд. лет. Наиболее вероятным временем существования расширяющейся Вселенной считают 15 млрд. лет. Таков приблизительный возраст нашей Вселенной.

В настоящее время существует несколько космологических моделей, объясняющих отдельные аспекты возникновения материи во Вселенной, но они не объясняют причин и процесса рождения самой Вселенной. Из всей совокупности современных космологических теорий только теория Большого взрыва Г. Гамова смогла к настоящему времени удовлетворительно объяснить почти все факты, связанные с этой проблемой. Основные черты модели Большого взрыва сохранились до сих пор, хотя и были позже дополнены теорией инфляции, или теорией раздувающейся Вселенной, разработанной американскими учеными А. Гутом и П. Стейн-хардтом и дополненной советским физиком А.Д. Линде.

В 1948 г. выдающийся американский физик русского происхождения Г. Гамов выдвинул предположение, что физическая Вселенная образовалась в результате гигантского взрыва, происшедшего примерно 15 млрд. лет тому назад. Тогда все вещество и вся энергия Вселенной были сконцентрированы в одном крохотном сверхплотном сгустке. Если верить математическим расчетам, то в начале расширения радиус Вселенной был и вовсе равен нулю, а ее плотность равна бесконечности. Это начальное состояние называется сингулярностью - точечный объем с бесконечной плотностью. Известные законы физики в сингулярности не работают. В этом состоянии теряют смысл понятия пространства и времени, поэтому бессмысленно спрашивать, где находилась эта точка. Также современная наука ничего не может сказать о причинах появления такого состояния.

Тем не менее, согласно принципу неопределенности Гейзенберга вещество невозможно стянуть в одну точку, поэтому считается, что Вселенная в начальном состоянии имела определенную плотность и размеры. По некоторым подсчетам, если все вещество наблюдаемой Вселенной, которое оценивается примерно в 10 61 г, сжать до плотности 10 94 г/см 3 , то оно займет объем около 10 -33 см 3 . Ни в какой электронный микроскоп разглядеть ее было бы невозможно. Долгое время ничего нельзя было сказать о причинах Большого взрыва и переходе Вселенной к расширению. Но сегодня появились некоторые гипотезы, пытающиеся объяснить эти процессы. Они лежат в основе инфляционной модели развития Вселенной.

Основная идея концепции Большого взрыва состоит в том, что Вселенная на ранних стадиях возникновения имела неустойчивое вакуумоподобное состояние с большой плотностью энергии. Эта энергия возникла из квантового излучения, т.е. как бы из ничего. Дело в том, что в физическом вакууме отсутствуют фиксируемые частицы, поля и волны, но это не безжизненная пустота. В вакууме имеются виртуальные частицы, которые рождаются, имеют мимолетное бытие и тут же исчезают. Поэтому вакуум «кипит» виртуальными частицами и насыщен сложными взаимодействиями между ними. Причем, энергия, заключенная в вакууме, располагается как бы на его разных этажах, т.е. имеется феномен разностей энергетических уровней вакуума.

Пока вакуум находится в равновесном состоянии, в нем существуют лишь виртуальные (призрачные) частицы, которые занимают в долг у вакуума энергию на короткий промежуток времени, чтобы родиться, и быстро возвращают позаимствованную энергию, чтобы исчезнуть. Когда же вакуум по какой-либо причине в некоторой исходной точке (сингулярности) возбудился и вышел из состояния равновесия, то виртуальные частицы стали захватывать энергию без отдачи и превращались в реальные частицы. В конце концов в определенной точке пространства образовалось огромное множество реальных частиц вместе со связанной ими энергией. Когда же возбужденный вакуум разрушился, то высвободилась гигантская энергия излучения, а суперсила сжала частицы в сверхплотную материю. Экстремальные условия «начала», когда даже пространство-время было деформировано, предполагают, что и вакуум находился в особом состоянии, которое называют «ложным» вакуумом. Оно характеризуется энергией предельно высокой плотности, которой соответствует предельно высокая плотность вещества. В этом состоянии вещества в нем могут возникать сильнейшие напряжения, отрицательные давления, равносильные гравитационному отталкиванию такой величины, что оно вызвало безудержное и стремительное расширение Вселенной - Большой взрыв. Это и было первотолчком, «началом» нашего мира.

С этого момента начинается стремительное расширение Вселенной, возникают время и пространство. В это время идет безудержное раздувание «пузырей пространства», зародышей одной или нескольких вселенных, которые могут отличаться друг от друга своими фундаментальными константами и законами. Один из них стал зародышем нашей Метагалактики.

По разным оценкам, период «раздувания», идущий по экспоненте, занимает невообразимо малый промежуток времени - до 10 - 33 с после «начала». Он называется инфляционным периодом. За это время размеры Вселенной увеличились в 10 50 раз, от миллиардной доли размера протона до размеров спичечного коробка.

К концу фазы инфляции Вселенная была пустой и холодной, но когда инфляция иссякла, Вселенная вдруг стала чрезвычайно «горячей». Этот всплеск тепла, осветивший космос, обусловлен огромными запасами энергии, заключенными в «ложном» вакууме. Такое состояние вакуума очень неустойчиво и стремится к распаду. Когда распад завершается, отталкивание исчезает, заканчивается и инфляция. А энергия, связанная в виде множества реальных частиц, высвободилась в виде излучения, мгновенно нагревшего Вселенную до 10 27 К. С этого момента Вселенная развивалась согласно стандартной теории «горячего» Большого взрыва.

Адронная эра продолжалась 10 -7 с. На этом этапе температура понижается до 10 13 К. При этом появляются все четыре фундаментальных взаимодействия, прекращается свободное существование кварков, они сливаются в адроны, важнейшими среди которых являются протоны и нейтроны. Наиболее значимым событием стало глобальное нарушение симметрии, которое произошло в первые мгновения существования нашей Вселенной. Число частиц оказалось чуть больше, чем число античастиц. Причины такой асимметрии точно неизвестны до сих пор. В общем плазмоподобном сгустке на каждый миллиард пар частиц и античастиц на одну частицу оказывалось больше, ей не хватало пары для аннигиляции. Это и определило дальнейшее появление вещественной Вселенной с галактиками, звездами, планетами и разумными существами на некоторых из них.

Лептонная эра продолжалась до 1 с после начала. Температура Вселенной понизилась до 10 10 К. Главными ее элементами были лептоны, которые участвовали во взаимных превращениях протонов и нейтронов. В конце этой эры вещество стало прозрачным для нейтрино, они перестали взаимодействовать с веществом и с тех пор дожили до наших дней.

Эра излучения (фотонная эра) продолжалась 1 млн. лет. За это время температура Вселенной снизилась с 10 млрд. К до 3000 К. На протяжении данного этапа происходили важнейшие для дальнейшей эволюции Вселенной процессы первичного нуклеосинтеза - соединение протонов и нейтронов (их было примерно в 8 раз меньше, чем протонов) в атомные ядра. К концу этого процесса вещество Вселенной состояло на 75% из протонов (ядер водорода), около 25% составляли ядра гелия, сотые доли процента пришлись на дейтерий, литий и другие легкие элементы, после чего Вселенная стала прозрачной для фотонов, так как излучение отделилось от вещества и образовало то, что в нашу эпоху называется реликтовым излучением.

Затем почти 500 тысяч лет не происходило никаких качественных изменений - шло медленное остывание и расширение Вселенной. Вселенная, оставаясь однородной, становилась все более разреженной. Когда она остыла до 3000 К, ядра атомов водорода и гелия уже могли захватывать свободные электроны и превращаться при этом в нейтральные атомы водорода и гелия. В итоге образовалась однородная Вселенная, представлявшая собой смесь трех почти не взаимодействующих субстанций: барионного вещества (водород, гелий и их изотопы), лептонов (нейтрино и антинейтрино) и излучения (фотоны). К этому времени уже не было высоких температур и больших давлений. Казалось, в перспективе Вселенную ждет дальнейшее расширение и остывание, образование «лептонной пустыни» - что-то вроде тепловой смерти. Но этого не случилось; напротив, произошел скачок, создавший современную структурную Вселенную, который, по современным оценкам, занял от 1 до 3 миллиардов лет.

После Большого взрыва образовавшееся вещество и электромагнитное поле были рассеяны и представляли собой газопылевое облако и электромагнитный фон. Спустя I млрд. лет после начала образования Вселенной стали появляться галактики и звезды. К этому времени вещество уже успело охладиться, и в нем стали возникать стабильные флуктуации плотности, равномерно заполнявшие космос. В сформировавшейся материальной среде появлялись и получали развитие случайные уплотнения вещества. Силы тяготения внутри таких уплотнений проявляют себя заметнее, чем за их границами. Поэтому, несмотря на общее расширение Вселенной, вещество в уплотнениях притормаживается, а его плотность начинает постепенно возрастать. Продолжая сжиматься и теряя при этом энергию на излучение, уплотнившееся вещество в результате своей эволюции превращалось в современные галактики. Появление подобных уплотнений и стало началом рождения крупномасштабных космических структур - галактик , а затем и отдельных звезд.

Итак, первым условием появления галактик во Вселенной стало появление случайных скоплений и сгущений вещества в однородной Вселенной. Впервые подобная мысль была высказана И. Ньютоном, который утверждал, что если бы вещество было равномерно рассеяно по бесконечному пространству, то оно никогда бы не собралось в единую массу. Оно собиралось бы частями в разных местах бесконечного пространства. Данная идея Ньютона стала одним из краеугольных камней современной космогонии.

Второе условие появления галактик - наличие малых возмущений, флуктуаций вещества, ведущих к отклонению от однородности и изотропности пространства. Именно флуктуации и стали теми «затравками», которые привели к появлению более крупных уплотнений вещества. Эти процессы можно представить по аналогии с процессами образования облаков в атмосфере Земли. Известно, что водяной пар конденсируется на крохотных частичках - ядрах конденсации.

В середине XX в. были проведены расчеты, описывающие поведение таких сгущений. В частности, было доказано, что в расширяющейся Вселенной участки среды с большей плотностью расширяются медленнее, чем Вселенная в целом. Эти области постепенно отстают в расширении от остальной Вселенной, и в какой-то момент времени они совсем перестают расширяться. Изолированные участки вещества, как правило, очень велики по массе: она составляет в среднем 10 15 -10 16 масс Солнца. Данные массы под действием гравитации начинают сжиматься, причем, происходит это весьма своеобразно - анизотропно. Вначале исходные объекты имеют форму куба, а затем сжимаются в пластинку - «блин». Первоначально изолированные друг от друга плоские «блины» очень скоро вырастают в плотные слои. Эти слои пересекаются, и в процессе их взаимодействия образуется ячеисто-сетчатая структура, где стенками огромных пустот служат «блины». Отдельный «блин» представляет собой сверхскопление галактик и имеет уплощенную форму. Эти первичные сгустки, продолжая сжиматься, становятся сферически симметричными. Кроме того, внутри себя они одновременно фрагментируются на звезды.

Существуют предположения относительно того, почему чаще встречаются спиральные галактики (их около 80%), чем галактики других типов (эллиптические и неправильные). Возможно, спиральные галактики образуются в результате слияния протогалактик в скоплениях. Вначале образуется объект неправильной формы, затем за несколько сотен миллионов лет (немного по космическим меркам) неровности сглаживаются, и образуется массивная эллиптическая галактика. Постепенно в результате вращения такой галактики может образовываться дискообразная структура, которая со временем будет приобретать облик спиральной галактики. Подтверждением этой точки зрения является наличие галактик переходного типа, занимающих промежуточное положение между спиральными и эллиптическими галактиками.

Также есть предположение, почему в скоплениях галактик присутствует одна гигантская галактика, а остальные - мелкие. Считается, что вначале гигантская галактика лишь немного превосходила по своим размерам соседние галактики. Но по мере того, как галактика двигалась по спиральной траектории к центру скопления, она заглатывала более мелкие системы.

Были выдвинуты гипотезы, объясняющие вращение галактик. Сегодня считается, что на ранних стадиях эволюции протогалактики были гораздо больше, чем сейчас. Кроме того, космологическое расширение не успело их разогнать далеко друг от друга, поэтому между ними возникали значительные гравитационные силы. Эти силы принимали вид приливных взаимодействий, которые и вызывали вращение галактик.

Галактики существуют в виде групп (несколько галактик), скоплений (сотни галактик) и облаков скоплений (тысячи галактик). Одиночные галактики во Вселенной встречаются очень редко. Средние расстояния между галактиками в группах и скоплениях в 10-20 раз больше, чем размеры самых крупных галактик. Гигантские галактики имеют размеры до 18 млн. световых лет. Наиболее удаленные из наблюдаемых ныне галактик находятся на расстоянии 10 млрд. световых лет. Свет этих звезд идет к нам миллионы лет, поэтому мы наблюдаем их такими, какими они были много световых лет назад. Пространство между галактиками заполнено газом, пылью и разного рода излучениями. Основное вещество, составляющее межзвездный газ, - водород, на втором месте - гелий. Следует отметить, что водород и гелий - наиболее распространенные вещества не только в межзвездном пространстве, но и вообще во Вселенной.

Наша Галактика - Млечный путь - имеет форму диска с выпуклостью в центре - ядром, от которого отходят спиралевидные рукава. Ее толщина - 1,5 тыс. световых лет, а диаметр - 100 тыс. световых лет. Возраст нашей Галактики составляет около 15 млрд. лет. Она вращается довольно сложным образом: значительная часть ее галактической материи вращается дифференциально, как планеты вращаются вокруг Солнца, не обращая внимания на то, по каким орбитам движутся другие, достаточно далекие космические тела, и скорость вращения этих тел уменьшается с увеличением их расстояния от центра. Другая часть диска нашей Галактики вращается твердотельно, как музыкальный диск, крутящийся на проигрывателе. В этой части галактического диска угловая скорость вращения одинакова для любой точки. Наше Солнце находится в таком участке Галактики, в котором скорости твердотельного и дифференциального вращения равны. Такое место называется коротационным кругом. В нем создаются особые, спокойные и стационарные условия для процессов звездообразования.

Звезды рождаются из космического вещества в результате его конденсации под действием гравитационных, магнитных и других сил. Под влиянием сил всемирного тяготения из газового облака образуется плотный шар - протозвезда, эволюция которой проходит три этапа.

Первый этап эволюции связан с обособлением и уплотнением космического вещества. Второй представляет собой стремительное сжатие протозвезды. В какой-то момент давление газа внутри про-тозвезды возрастает, что замедляет процесс ее сжатия, однако температура во внутренних областях пока остается недостаточной для начала термоядерной реакции. На третьем этапе протозвезда продолжает сжиматься, а ее температура - повышаться, что приводит к началу термоядерной реакции. Давление газа, вытекающего из звезды, уравновешивается силой притяжения, и газовый шар перестает сжиматься. Образуется равновесный объект - звезда. Такая звезда является саморегулирующейся системой. Если температура внутри не повышается, то звезда раздувается. В свою очередь, остывание звезды приводит к ее последующему сжатию и разогреванию, ядерные реакции в ней ускоряются. Таким образом, температурный баланс оказывается восстановлен. Процесс преобразования протозвезды в звезду растягивается на миллионы лет, что сравнительно немного по космическим масштабам.

Рождение звезд в галактиках происходит непрерывно. Этот процесс компенсирует также непрерывно происходящую смерть звезд. Поэтому галактики состоят из старых и молодых звезд. Самые старые звезды сосредоточены в шаровых скоплениях, их возраст сравним с возрастом галактики. Эти звезды формировались, когда про-тогалактическое облако распадалось на все более мелкие сгустки. Молодые звезды (возраст около 100 тыс. лет) существуют за счет энергии гравитационного сжатия, которая разогревает центральную область звезды до температуры 10-15 млн. К и «запускает» термоядерную реакцию преобразования водорода в гелий. Именно термоядерная реакция является источником собственного свечения звезд.

Большое значение для характеристики звезд имеетдиаграмма Герцшпрунга - Рассела , которая показывает зависимость между абсолютной звёздной величиной, светимостью,спектральным классом и температурой поверхности звезды. Соответственно, диаграмму можно использовать для классификации звёзд и иллюстрации представлений о звёздной эволюции.

Диаграмма даёт возможность (хотя и не очень точно) найти абсолютную величину по спектральному классу - особенно для спектральных классов O-F. Для поздних классов это осложняется необходимостью сделать выбор между гигантом и карликом. Однако определённые различия в интенсивности некоторых линий позволяют уверенно сделать этот выбор. Около 90 % звёзд находятся на главной последовательности. Их светимость обусловлена ядерными реакциями превращения водорода в гелий. Выделяется также несколько ветвей проэволюционировавших звёзд - гигантов, в которых происходит горение гелия и более тяжёлых элементов. В левой нижней части диаграммы находятся полностью проэволюционировавшие белые карлики.

С момента начала термоядерной реакции, превращающей водород в гелий, звезда типа нашего Солнца переходит на так называемую главную последовательность диаграммы, в соответствии с которой будут изменяться с течением времени характеристики звезды: ее светимость, температура, радиус, химический состав и масса. После выгорания водорода в центральной зоне у звезды образуется гелиевое ядро. Водородные термоядерные реакции продолжают протекать, но только в тонком слое вблизи поверхности этого ядра. Ядерные реакции перемещаются на периферию звезды. Выгоревшее ядро начинает сжиматься, а внешняя оболочка - расширяться. Оболочка разбухает до колоссальных размеров, внешняя температура становится низкой, и звезда переходит в стадию красного гиганта. С этого момента звезда выходит на завершающий этап своей жизни. Наше Солнце это ждет примерно через 8 млрд. лет. При этом его размеры увеличатся до орбиты Меркурия, а может быть, и до орбиты Земли, так что от планет земной группы ничего не останется (или останутся оплавленные камни).

Для красного гиганта характерна низкая внешняя, но очень высокая внутренняя температура. При этом в термоядерные процессы включаются все более тяжелые ядра, что приводит к синтезу химических элементов и непрерывной потере красным гигантом вещества, которое выбрасывается в межзвездное пространство. Так, только за один год Солнце, находясь в стадии красного гиганта, может потерять одну миллионную часть своего веса. Всего за десять - сто тысяч лет от красного гиганта остается лишь центральное гелиевое ядро, и звезда становится белым карликом. Таким образом, белый карлик как бы вызревает внутри красного гиганта, а затем сбрасывает остатки оболочки, поверхностных слоев, которые образуют планетарную туманность, окружающую звезду.

Белые карлики невелики по своим размерам - их диаметр даже меньше диаметра Земли, хотя их масса сравнима с солнечной. Плотность такой звезды в миллиарды раз больше плотности воды. Кубический сантиметр его вещества весит больше тонны. Тем не менее, это вещество является газом, хотя и чудовищной плотности. Вещество, из которого состоит белый карлик, - очень плотный ионизированный газ, состоящий из ядер атомов и отдельных электронов.

В белых карликах термоядерные реакции практически не идут, они возможны лишь в атмосфере этих звезд, куда попадает водород из межзвездной среды. В основном эти звезды светят за счет огромных запасов тепловой энергии. Время их охлаждения - сотни миллионов лет. Постепенно белый карлик остывает, цвет его меняется от белого к желтому, а затем - к красному. Наконец, он превращается в черный карлик - мертвую холодную маленькую звезду размером с земной шар, который невозможно увидеть из другой планетной системы.

Несколько иначе развиваются более массивные звезды. Они живут всего несколько десятков миллионов лет. В них очень быстро выгорает водород, и они превращаются в красные гиганты всего за 2,5 млн. лет. При этом в их гелиевом ядре температура повышается до нескольких сотен миллионов градусов. Такая температура дает возможность для протекания реакций углеродного цикла (слияние ядер гелия, приводящее к образованию углерода). Ядро углерода, в свою очередь, может присоединить еще одно ядро гелия и образовать ядро кислорода, неона и т.д. вплоть до кремния. Выгорающее ядро звезды сжимается, и температура в нем поднимается до 3-10 млрд. градусов. В таких условиях реакции объединения продолжаются вплоть до образования ядер железа - самого устойчивого во всей последовательности химического элемента. Более тяжелые химические элементы - от железа до висмута также образуются в недрах красных гигантов, в процессе медленного захвата нейтронов. При этом энергия не выделяется, как при термоядерных реакциях, а, наоборот, поглощается. В результате сжатие звезды все убыстряется.

Образование же наиболее тяжелых ядер, замыкающих таблицу Менделеева, предположительно происходит в оболочках взрывающихся звезд, при их превращении в новые или сверхновые звезды, которыми становятся некоторые красные гиганты. В зашлакованной звезде нарушается равновесие, электронный газ более не способен противостоять давлению ядерного газа. Наступает коллапс - катастрофическое сжатие звезды, она «взрывается внутрь». Но если отталкивание частиц или какие-либо другие причины все же останавливают этот коллапс, происходит мощный взрыв - вспышка сверхновой звезды. Одновременно при этом в окружающее пространство сбрасывается не только оболочка звезды, но и до 90% ее массы, что приводит к образованию газовых туманностей. При этом светимость звезды увеличивается в миллиарды раз. Так, был зафиксирован взрыв сверхновой звезды в 1054 г. В китайских летописях было записано, что она видна днем, как Венера, в течение 23 дней. В наше время астрономы выяснили, что эта сверхновая звезда оставила после себя Крабовидную туманность, являющуюся мощным источником радиоизлучения.

Взрыв сверхновой звезды сопровождается выделением чудовищного количества энергии. При этом рождаются космические лучи, намного повышающие естественный радиационный фон и нормальные дозы космического излучения. Так, астрофизики подсчитали, что примерно раз в 10 млн. лет сверхновые звезды вспыхивают в непосредственной близости от Солнца, повышая естественный фон в 7 тысяч раз. При взрыве сверхновых идет сброс всей внешней оболочки звезды вместе с накопившимися в ней «шлаками» - химическими элементами, результатами деятельности нуклеосинтеза. Поэтому межзвездная среда сравнительно быстро обретает все известные на сегодняшний день химические элементы тяжелее гелия. Звезды следующих поколений, в том числе и Солнце, с самого начала содержат в своем составе и в составе окружающего их газопылевого облака примесь тяжелых элементов.

Хотя появление крупномасштабных структур во Вселенной привело к образованию множества разновидностей галактик и звезд, среди которых есть совершенно уникальные объекты, все же с точки зрения дальнейшей эволюции Вселенной особое значение имело появление звезд - красных гигантов. Именно в этих звездах в ходе процессов звездного нуклеосинтеза появилось большинство элементов таблицы Менделеева. Это открыло возможность для новых усложнений вещества. В первую очередь, появилась возможность образования планет и появления на некоторых из них жизни и, возможно, разума. Поэтому образование планет стало следующим этапом в эволюции Вселенной.

2024 med103.ru. Я самая красивая. Мода и стиль. Разные хитрости. Уход за лицом.