Закон радиоактивного распада постоянная радиоактивного распада активность. Основной закон радиоактивного распада. Дифференциальная форма закона

История изучения радиоактивности началась 1 марта 1896 года, когда известный французский ученый случайно обнаружил странность в излучении солей урана. Оказалось, что фотопластинки, расположенные в одном ящике с образцом, засвечены. К этому привело странное, обладающее высокой проникающей способностью излучение, которым обладал уран. Это свойство обнаружилось у самых тяжелых элементов, завершающих периодическую таблицу. Ему дали название "радиоактивность".

Вводим характеристики радиоактивности

Данный процесс - самопроизвольное превращение атома изотопа элемента в иной изотоп с одновременным выделением элементарных частиц (электронов, ядер атомов гелия). Превращение атомов оказалось самопроизвольным, не требующим поглощения энергии извне. Основной величиной, характеризующей процесс выделения энергии в ходе называют активность.

Активностью радиоактивного образца называют вероятное количество распадов данного образца за единицу времени. В интернациональной) единицей измерения ее назван беккерель (Бк). В 1 беккерель принята активность такого образца, в котором в среднем происходит 1 распад в секунду.

А=λN, где λ- постоянная распада, N - число активных атомов в образце.

Выделяют α, β, γ-распады. Соответствующие уравнения называют правилами смещения:

Временной интервал в радиоактивности

Момент развала частицы невозможно установить для данного конкретного атома. Для него это скорее «несчастный случай», нежели закономерность. Выделение энергии, характеризующее этот процесс, определяют как активность образца.

Замечено, что она с течением времени меняется. Хотя отдельные элементы демонстрируют удивительное постоянство степени излучения, существуют вещества, активность которых уменьшается в несколько раз за достаточно короткий промежуток времени. Удивительное разнообразие! Возможно ли найти закономерность в этих процессах?

Установлено, что существует время, в течение которого ровно половина атомов данного образца претерпевает распад. Этот интервал времени получил название "период полураспада". В чем смысл введения этого понятия?

полураспада?

Представляется, что за время, равное периоду, ровно половина всех активных атомов данного образца распадается. Но означает ли это, что за время в два периода полураспада все активные атомы полностью распадутся? Совсем нет. Через определенный момент в образце остается половина радиоактивных элементов, через такой же промежуток времени из оставшихся атомов распадается еще половина, и так далее. При этом излучение сохраняется длительное время, значительно превышающее период полураспада. Значит, активные атомы сохраняются в образце независимо от излучения

Период полураспада - это величина, зависящая исключительно от свойств данного вещества. Значение величины определено для многих известных радиоактивных изотопов.

Таблица: «Полупериод распада отдельных изотопов»

Название

Обозначение

Вид распада

Период полураспада

0,001 секунд

бета, гамма

альфа, гамма

альфа, гамма

4,5 млрд лет

Определение периода полураспада выполнено экспериментально. В ходе лабораторных исследований многократно проводится измерение активности. Поскольку лабораторные образцы минимальных размеров (безопасность исследователя превыше всего), эксперимент проводится с различным интервалом времени, многократно повторяясь. В его основу положена закономерность изменения активности веществ.

С целью определения периода полураспада производится измерение активности данного образца в определенные промежутки времени. С учетом того, что данный параметр связан с количеством распавшихся атомов, используя закон радиоактивного распада, определяют период полураспада.

Пример определения для изотопа

Пусть число активных элементов исследуемого изотопа в данный момент времени равно N, интервал времени, в течение которого ведется наблюдение t 2 - t 1 , где моменты начала и окончания наблюдения достаточно близки. Допустим, что n - число атомов, распавшихся в данный временной интервал, тогда n = KN(t 2 - t 1).

В данном выражении K = 0,693/T½ - коэффициент пропорциональности, называющийся константой распада. T½ - период полураспада изотопа.

Примем временной интервал за единицу. При этом K = n/N указывает долю от присутствующих ядер изотопа, распадающихся в единицу времени.

Зная величину константы распада, можно определить и полупериод распада: T½ = 0,693/K.

Отсюда следует, что за единицу времени распадается не определенное количество активных атомов, а определенная их доля.

Закон радиоактивного распада (ЗРР)

Период полураспада положен в основу ЗРР. Закономерность выведена Фредерико Содди и Эрнестом Резерфордом на основе результатов экспериментальных исследований в 1903 году. Удивительно, что многократные измерения, выполненные при помощи приборов, далеких от совершенства, в условиях начала ХХ столетия, привели к точному и обоснованному результату. Он стал основой теории радиоактивности. Выведем математическую запись закона радиоактивного распада.

Пусть N 0 - количество активных атомов в данный момент времени. По истечении интервала времени t нераспавшимися останутся N элементов.

К моменту времени, равному периоду полураспада, останется ровно половина активных элементов: N=N 0 /2.

По прошествии еще одного периода полураспада в образце остаются: N=N 0 /4=N 0 /2 2 активных атомов.

По прошествии времени, равному еще одному периоду полураспада, образец сохранит только: N=N 0 /8=N 0 /2 3 .

К моменту времени, когда пройдет n периодов полураспада, в образце останется N=N 0 /2 n активных частиц. В этом выражении n=t/T½: отношение времени исследования к периоду полураспада.

ЗРР имеет несколько иное математическое выражение, более удобное в решении задач: N=N 0 2 - t/ T½ .

Закономерность позволяет определить, помимо периода полураспада, число атомов активного изотопа, нераспавшихся в данный момент времени. Зная число атомов образца в начале наблюдения, через некоторое время можно определить время жизни данного препарата.

Определить период полураспада формула закона радиоактивного распада помогает лишь при наличии определенных параметров: числа активных изотопов в образце, что узнать достаточно сложно.

Следствия закона

Записать формулу ЗРР можно, используя понятия активности и массы атомов препарата.

Активность пропорциональна числу радиоактивных атомов: A=A 0 .2 -t/T . В этой формуле А 0 - активность образца в начальный момент времени, А - активность по истечении t секунд, Т - период полураспада.

Масса вещества может быть использована в закономерности: m=m 0 .2 -t/T

В течение любых равных промежутков времени распадается абсолютно одинаковая доля радиоактивных атомов, имеющихся в наличии в данном препарате.

Границы применимости закона

Закон во всех смыслах является статистическим, определяя процессы, протекающие в микромире. Понятно, что период полураспада радиоактивных элементов - величина статистическая. Вероятностный характер событий в атомных ядрах предполагает, что произвольное ядро может развалиться в любой момент. Предсказать событие невозможно, можно лишь определить его вероятность в данный момент времени. Как следствие, период полураспада не имеет смысла:

  • для отдельного атома;
  • для образца минимальной массы.

Время жизни атома

Существование атома в его первоначальном состоянии может длиться секунду, а может и миллионы лет. Говорить о времени жизни данной частицы также не приходится. Введя величину, равную среднему значению времени жизни атомов, можно вести разговор о существовании атомов радиоактивного изотопа, последствиях радиоактивного распада. Период полураспада ядра атома зависит от свойств данного атома и не зависит от других величин.

Можно ли решить проблему: как найти период полураспада, зная среднее время жизни?

Определить период полураспада формула связи среднего времени жизни атома и постоянной распада помогает не меньше.

τ= T 1/2 /ln2= T 1/2 /0,693=1/ λ.

В этой записи τ - среднее время жизни, λ - постоянная распада.

Использование периода полураспада

Применение ЗРР для определения возраста отдельных образцов получило широкое распространение в исследованиях конца ХХ века. Точность определения возраста ископаемых артефактов настолько возросла, что может дать представление о времени жизни за тысячелетия до нашей эры.

Ископаемых органических образцов основан на изменении активности углерода-14 (радиоактивного изотопа углерода), присутствующего во всех организмах. Он попадает в живой организм в процессе обмена веществ и содержится в нем в определенной концентрации. После смерти обмен веществ с окружающей средой прекращается. Концентрация радиоактивного углерода падает вследствие естественного распада, активность уменьшается пропорционально.

При наличии такого значения, как период полураспада, формула закона радиоактивного распада помогает определить время с момента прекращения жизнедеятельности организма.

Цепочки радиоактивного превращения

Исследования радиоактивности проводились в лабораторных условиях. Удивительная способность радиоактивных элементов сохранять активность в течение часов, суток и даже лет не могла не вызывать удивления у физиков начала ХХ столетия. Исследования, к примеру, тория, сопровождались неожиданным результатом: в закрытой ампуле активность его была значительной. При малейшем дуновении она падала. Вывод оказался прост: превращение тория сопровождается выделением радона (газ). Все элементы в процессе радиоактивности превращаются в совершенно иное вещество, отличающееся и физическими, и химическими свойствами. Это вещество, в свою очередь, также нестабильно. В настоящее время известно три ряда аналогичных превращений.

Знания о подобных превращениях крайне важны при определении времени недоступности зон, зараженных в процессе атомных и ядерных исследований или катастроф. Период полураспада плутония - в зависимости от его изотопа - лежит в интервале от 86 лет (Pu 238) до 80 млн лет (Pu 244). Концентрация каждого изотопа дает представление о периоде обеззараживания территории.

Самый дорогой металл

Известно, что в наше время есть металлы значительно более дорогие, чем золото, серебро и платина. К ним относится и плутоний. Интересно, что в природе созданный в процессе эволюции плутоний не встречается. Большинство элементов получены в лабораторных условиях. Эксплуатация плутония-239 в ядерных реакторах дала возможность ему стать чрезвычайно популярным в наши дни. Получение достаточного для использования в реакторах количества данного изотопа делает его практически бесценным.

Плутоний-239 получается в естественных условиях как следствие цепочки превращений урана-239 в нептуний-239 (период полураспада - 56 часов). Аналогичная цепочка позволяет накопить плутоний в ядерных реакторах. Скорость появления необходимого количества превосходит естественную в миллиарды раз.

Применение в энергетике

Можно много говорить о недостатках атомной энергетики и о «странностях» человечества, которое практически любое открытие использует для уничтожения себе подобных. Открытие плутония-239, который способен принимать участие в позволило использовать его в качестве источника мирной энергии. Уран-235, являющийся аналогом плутония, встречается на Земле крайне редко, выделить его из значительно сложнее, чем получить плутоний.

Возраст Земли

Радиоизотопный анализ изотопов радиоактивных элементов дает более точное представление о времени жизни того или иного образца.

Использование цепочки превращений "уран - торий", содержащихся в земной коре, дает возможность определить возраст нашей планеты. Процентное соотношение этих элементов в среднем по всей земной коре лежит в основе этого метода. По последним данным, возраст Земли составляет 4,6 миллиарда лет.

Лекция 2. Основной закон радиоактивного распада и активность радионуклидов

Скорость распада радионуклидов различна – одни распадаются быстрее, другие – медленнее. Показателем скорости радиоактивного распада является постоянная радиоактивного распада, λ [сек -1], которая характеризует вероятность распада одного атома за одну секунду. Для каждого радионуклида постоянная распада имеет своё значение, чем оно больше, тем быстрее распадаются ядра вещества.

Число распадов, регистрируемых в радиоактивном образце за единицу времени, называют активностью (a ), или радиоактивностью образца. Значение активности прямо пропорционально количеству атомов N радиоактивного вещества:

a =λ· N , (3.2.1)

где λ – постоянная радиоактивного распада, [сек-1].

В настоящее время, согласно действующей Международной системе единиц СИ, за единицу измерения радиоактивности принят беккерель [Бк ]. Своё название эта единица получила в честь французского учёного Анри Беккереля, открывшего в 1856 г. явление естественной радиоактивности урана. Один беккерель равен одному распаду в секунду 1 Бк = 1 .

Однако до сих пор достаточно часто применяется внесистемная единица активностикюри [Ки ], введённая супругами Кюри как мера скорости распада одного грамма радия (в котором происходит ~3,7·1010 распадов в секунду), поэтому

1 Ки = 3,7·1010 Бк .

Эта единица удобна для оценки активности больших количеств радионуклидов.

Снижение концентрации радионуклида во времени в результате распада подчиняется экспоненциальной зависимости:

, (3.2.2)

где N t – количество атомов радиоактивного элемента оставшихся через время t после начала наблюдения; N 0 – количество атомов в начальный момент времени (t =0 ); λ – постоянная радиоактивного распада.

Описанная зависимость называется основным законом радиоактивного распада .

Время, за которое распадается половина от общего количества радионуклидов, называется периодом полураспада, Т ½ . Через один период полураспада из 100 атомов радионуклида остаются только 50 (рис. 2.1). За следующий такой же период из этих 50 атомов остаются лишь 25 и так далее.

Связь между периодом полураспада и постоянной распада выводится из уравнения основного закона радиоактивного распада:

при t =T ½ и

получаем https://pandia.ru/text/80/150/images/image006_47.gif" width="67" height="41 src="> Þ ;

https://pandia.ru/text/80/150/images/image009_37.gif" width="76" height="21">;

т. е..gif" width="81" height="41 src=">.

Поэтому закон радиоактивного распада можно записать следующим образом:

https://pandia.ru/text/80/150/images/image013_21.gif" width="89" height="39 src=">, (3.2.4)

где at – активность препарата через время t ; a 0 – активность препарата в начальный момент наблюдения.

Часто необходимо определить активность заданного количества любого радиоактивного вещества.

Вспомним, что единица количества вещества – моль. Моль – это количество вещества, содержащее столько же атомов, сколько их содержится в 0,012 кг=12 г изотопа углерода 12С.

В одном моле любого вещества содержится число Авогадро NA атомов:

NA = 6,02·1023 атомов.

Для простых веществ (элементов) масса одного моля численно соответствует атомной массе А элемента

1моль = А г.

Например: Для магния: 1 моль 24Mg = 24 г.

Для 226Ra: 1 моль 226Ra = 226 г и т. д.

С учётом сказанного в m граммах вещества будет N атомов:

https://pandia.ru/text/80/150/images/image015_20.gif" width="156" height="43 src="> (3.2.6)

Пример: Подсчитаем активность 1-го грамма 226Ra, у которого λ = 1.38·10-11 сек-1.

a = 1.38·10-11·1/226·6,02·1023 = 3,66·1010 Бк.

Если радиоактивный элемент входит в состав химического соединения, то при определении активности препарата необходимо учитывать его формулу. С учётом состава вещества определяется массовая доля χ радионуклида в веществе, которая определяется соотношением:

https://pandia.ru/text/80/150/images/image017_17.gif" width="118" height="41 src=">

Пример решения задачи

Условие:

Активность А0 радиоактивного элемента 32Р в день наблюдения составляет 1000 Бк . Определить активность и количество атомов этого элемента через неделю. Период полураспада Т ½ 32Р = 14,3 дня.

Решение:

а) Найдём активность фосфора-32 через 7 суток:

https://pandia.ru/text/80/150/images/image019_16.gif" width="57" height="41 src=">

Ответ: через неделю активность препарата 32Р составит 712 Бк, а количество атомов радиоактивного изотопа 32Р – 127,14·106 атомов.

Контрольные вопросы

1) Что такое активность радионуклида?

2) Назовите единицы радиоактивности и связь между ними.

3) Что такое постоянная радиоактивного распада?

4) Дайте определение основному закону радиоактивного распада.

5) Что такое период полураспада?

6) Какая существует связь между активностью и массой радионуклида? Напишите формулу.

Задачи

1. Рассчитайте активность 1 г 226Ra. Т½ = 1602 года.

2. Рассчитайте активность 1 г 60Со. Т½ = 5,3 года.

3. Один танковый снаряд М-47 содержит 4,3 кг 238U. Т½ = 2,5·109 лет. Определите активность снаряда.

4. Рассчитайте активность 137Cs через 10 лет, если в начальный момент наблюдения она равна 1000 Бк . Т½ = 30 лет.

5. Рассчитайте активность 90Sr год назад, если в настоящий момент времени она равна 500 Бк . Т½ = 29 лет.

6. Какую активность будет создавать 1 кг радиоизотопа 131I, Т½ = 8,1 дня?

7. Пользуясь справочными данными, определите активность 1 г 238U. Т½ = 2,5·109 лет.

Пользуясь справочными данными, определите активность 1 г 232Th, Т½ = 1,4·1010 лет.

8. Рассчитайте активность соединения: 239Pu316O8.

9. Вычислите массу радионуклида активностью в 1 Ки :

9.1. 131I, Т1/2=8,1 дня;

9.2. 90Sr, Т1/2=29 лет;

9.3. 137Cs, Т1/2=30 лет;

9.4. 239Pu, Т1/2=2,4·104 лет.

10. Определите массу 1 мКи радиоактивного изотопа углерода 14С, Т½ = 5560 лет.

11. Необходимо приготовить радиоактивный препарат фосфора 32P. Через какой промежуток времени останется 3 % препарата? Т½ = 14,29 сут.

12. В природной смеси калия содержится 0,012 % радиоактивного изотопа 40К.

1) Определите массу природного калия, в котором содержится 1 Ки 40К. Т½ = 1,39·109 лет = 4,4·1018 сек.

2) Рассчитайте радиоактивность грунта по 40К, если известно, что содержание калия в образце грунта – 14 кг/т.

13. Сколько периодов полураспада требуется для того, чтобы первоначальная активность радиоизотопа снизилась до 0,001 %?

14. Для определения влияния 238U на растения семена замачивали в 100 мл раствора UO2(NO3)2·6H2O, в котором масса радиоактивной соли составляла 6 г . Определите активность и удельную активность 238U в растворе. Т½ = 4,5·109 лет .

15. Определите активность 1 грамма 232Th, Т½ = 1,4·1010 лет.

16. Определите массу 1 Ки 137Cs, Т1/2=30 лет.

17. Соотношение между содержанием стабильных и радиоактивного изотопов калия в природе – величина постоянная. Содержание 40К равно 0,01%. Рассчитайте радиоактивность грунта по 40К, если известно, что содержание калия в образце грунта – 14 кг/т .

18. Литогенная радиоактивность окружающей среды формируется преимущественно за счёт трёх основных природных радионуклидов: 40К, 238U, 232Th. Доля радиоактивных изотопов в природной сумме изотопов составляет 0,01, 99,3, ~100 соответственно. Рассчитайте радиоактивность 1 т грунта, если известно, что относительное содержание калия в образце грунта 13600 г/т , урана – 1·10-4 г/т , тория – 6·10-4 г/т.

19. В раковинах двустворчатых моллюсков обнаружено 23200 Бк/кг 90Sr. Определите активность образцов через 10, 30, 50, 100 лет.

20. Основное загрязнение замкнутых водоёмов Чернобыльской зоны состоялось в первый год после аварии на АЭС . В донных отложениях оз. Азбучин в 1999 г. обнаружен 137Cs с удельной активностью 1,1·10 Бк/м2 . Определите концентрацию (активность) выпавшего 137Cs на м2 донных отложений по состоянию на 1986-1987гг. (12 лет назад).

21. 241Am (Т½ = 4,32·102 лет) образуется из 241Pu (Т½ = 14,4 лет) и является активным геохимическим мигрантом. Пользуясь справочными материалами, рассчитайте с точностью до 1% уменьшение активности плутония-241 во времени, в каком году после Чернобыльской катастрофы образование 241Am в окружающей среде будет максимальным.

22. Рассчитайте активность 241Am в продуктах выбросах Чернобыльского реактора по состоянию на апрель
2015 г., при условии, что в апреле 1986 г. активность 241Am составила 3,82·1012 Бк, Т½ = 4,32·102 лет.

23. В образцах грунта обнаружено 390 нКи/кг 137Cs. Рассчитайте активность образцов через 10, 30, 50, 100 лет.

24. Средняя концентрация загрязнения ложа оз. Глубокого, расположенного в Чернобыльской зоне отчуждения, составляет 6,3·104 Бк 241Am и 7,4·104 238+239+240Pu на 1 м2. Рассчитайте, в каком году получены эти данные.

В результате всех видов радиоактивных превращений количество ядер данного изотопа постепенно уменьшается. Убывание количества распадающихся ядер происходит по экспоненте и записывается в следующем виде:

N=N 0 е t , (10)

где N 0 – количество ядер радионуклида в момент начала отсчета времени (t=0); - постоянная распада, которая для различных радионуклидов разная;N – количество ядер радионуклида спустя времяt ; е – основание натурального логарифма (е = 2,713….). Это и есть основной закон радиоактивного распада.

Вывод формулы (10). Естественный радиоактивный распад ядер протекает самопроизвольно, без всякого воздействия извне. Этот процесс статистический, и для отдельно взятого ядра можно лишь указать вероятность распада за определенное время. Поэтому скорость распада можно характеризовать временемt. Пусть имеется числоN атомов радионуклида. Тогда, число распадающихся атомовdN за времяdt пропорционально числу атомовN и промежутку времениdt:

Знак минус показывает, что число N исходных атомов уменьшается во времени. Экспериментально показано, что свойства ядер со временем не меняются. Отсюда следует, чтоlесть величина постоянная и носит название – постоянная распада. Из (11) следует, чтоl= –dN/N=const, приdt= 1, т.е. постояннаяlравна вероятности распада одного радионуклида за единицу времени.

В уравнении (11) поделим правую и левую части на N и проинтегрируем:

dN/N = – l dt (12)

(13)

ln N/N 0 = – λt и N = N 0 е – λt , (14)

где N 0 есть начальное число распадающихся атомов (N 0 приt=0).

Формула (14) имеет два недостатка. Для определения числа распадающихся ядер необходимо знать N 0 . Прибора для его определения не существует. Второй недостаток – хотя постоянная распадаλ имеется в таблицах, но прямой информации о скорости распада она не несет.

Чтобы избавиться от величины λ вводится понятиепериод полураспада Т (иногда в литературе обозначается Т 1/2). Периодом полураспада называется промежуток времени, в течение которого исходное число радиоактивных ядер уменьшается вдвое, а число распадающихся ядер за времяТ остается постоянным (λ=const).

В уравнении (10) правую и левую часть поделим на N , и приведем к виду:

N 0 /N = е t (15)

Полагая, что N 0 / N = 2, приt = T , получимln 2 = Т , откуда:

ln 2 = 0,693 = 0,693/ T (16)

Подставив выражение (16) в (10) получим:

N = N 0 е –0.693t/T (17)

На графике (рис.2.) показана зависимость числа распадающихся атомов от времени распада. Теоретически кривая экспонента никогда не может слиться с осью абсцисс, но на практике можно считать, что примерно через 10–20 периодов полураспада радиоактивное вещество распадается полностью.

Для того, чтобы избавиться от величин NиN 0, пользуются следующим свойством явления радиоактивности. Есть приборы, которые регистрируют каждый распад. Очевидно, что можно определить количество распадов за определенный промежуток времени. Это есть не что иное, как скорость распада радионуклида, которую можно назвать активностью: чем больше распадается за одно и тоже время ядер, тем больше активность.

Итак, активность – это физическая величина, характеризующая число радиоактивных распадов в единицу времени:

А = dN / dt (18)

Исходя из определения активности, следует, что она характеризует скорость ядерных переходов в единицу времени. С другой стороны, количество ядерных переходов зависит от постоянной распада l . Можно показать, что:

A = A 0 е –0,693t/T (19)

Вывод формулы (19). Активность радионуклида характеризует число распадов в единицу времени (в секунду) и равна производной по времени от уравнения (14):

А = d N/ dt = l N 0 е –- t = l N (20)

Соответственно начальная активность в момент времени t = 0 равна:

А o = l N o (21)

Исходя из уравнения (20) и с учетом (21), получим:

А = А o е t илиА = А 0 е – 0,693 t / T (22)

Единицей активности в системе СИ принят 1 распад/с=1 Бк (назван Беккерелем в честь французского ученого (1852–1908 г), открывшего в 1896 году естественную радиоактивность солей урана). Используют также кратные единицы: 1 ГБк=10 9 Бк – гигабеккерель, 1 МБк=10 6 Бк – мегабеккерель, 1 кБк=10 3 Бк – килобеккерель и др.

Существует и внесистемная единица Кюри, которая изымается из употребления согласно ГОСТ 8.417-81 и РД 50-454-84. Однако на практике и в литературе она используется. За1Кu принята активность 1г радия.

1Кu = 3,7 10 10 Бк; 1Бк = 2,7 10 –11 Ки (23)

Используют также кратную единицу мегакюри 1Мки=110 6 Ки и дольные – милликюри, 1мКи=10 –3 Ки; микрокюри, 1мкКи=10 –6 Ки.

Радиоактивные вещества могут находиться в различном агрегатном состоянии, в том числе аэрозольном, взвешенном состоянии в жидкости или в воздухе. Поэтому в дозиметрической практике часто используют величину удельной, поверхностной или объемной активности или концентрации радиоактивных веществ в воздухе, жидкости и в почве.

Удельную, объемную и поверхностную активность можно записать соответственно в виде:

А m = А/m; А v = А/v; А s = A/s (24)

где: m – масса вещества;v – объем вещества;s – площадь поверхности вещества.

Очевидно, что:

А m = A / m = A / s r h = А s / r h = A v / r (25)

где: r – плотность почвы, принимается в Республике Беларусь равной 1000кг/м 3 ;h – корнеобитаемый слой почвы, принимается равным 0,2м;s – площадь радиоактивного заражения, м 2 . Тогда:

А m = 5 10 –3 А s ; А m = 10 –3 A v (26)

А m может быть выражена в Бк/кг или Кu/кг;A s может быть выражена в Бк/м 2 ,Кu/ м 2 , Кu/км 2 ;A v может быть выражена в Бк/м 3 или Кu/м 3 .

На практике могут быть использованы как укрупненные, так и дробные единицы измерения. Например: Кu/ км 2 , Бк/см 2 , Бк/г и др.

В нормах радиационной безопасности НРБ-2000 дополнительно введены еще несколько единиц активности, которыми удобно пользоваться при решении задач радиационной безопасности.

Активность минимально значимая (МЗА) – активность открытого источника ионизирующего излучения в помещении или на рабочем месте, при превышении которой требуется разрешение органов санитарно-эпидемиологической службы Министерства здравоохранения на использование этих источников, если при этом также превышено значение минимально значимой удельной активности.

Активность минимально значимая удельная (МЗУА) – удельная активность открытого источника ионизирующего излучения в помещении или на рабочем месте, при превышении которой требуется разрешение органов санитарно-эпидемиологической службы Министерства здравоохранения на использование этого источника, если при этом также превышено значение минимально значимой активности.

Активность эквивалентная равновесная (ЭРОА) дочерних продуктов изотопов радона 222 Rn и 220 Rn – взвешенная сумма объемных активностей короткоживущих дочерних продуктов изотопов радона – 218 Ро (RaA ); 214 Pb (RaB ); 212 Pb (ThB ); 212 В i (ThC ) соответственно:

(ЭРОА) Rn = 0,10 А RaA + 0,52 А RaB + 0,38 А RaC ;

(ЭРОА) Th = 0,91 А ThB + 0,09 А ThC ,

где А – объемные активности дочерних продуктов изотопов радона и тория.

Под радиоактивным распадом , или просто распадом , понимают естественное радиоактивное превращение ядер, происходящее самопроизвольно. Атомное ядро, испытывающее радиоактивный распад, называется материнским , возникающее ядро - дочерним .

Теория радиоактивного распада строится на предположении о том, что радиоактивный распад является спонтанным процессом, подчиняющимся законам статистики. Поскольку отдельные радиоактивные ядра распадаются независимо друг от друга, можно считать, что число ядер dN , распавшихся в среднем за интервал времени от t до t + dt , пропорционально промежутку времени dt и числу N нераспавшихся ядер к моменту времени t :

где - постоянная для данного радиоактивного вещества величина, называемая постоянной радиоактивного распада ; знак минус указывает, что общее число радиоактивных ядер в процессе распада уменьшается.

Разделив переменные и интегрируя, т.е.

(256.2)

где - начальное число нераспавшихся ядер (в момент времени t = 0), N - число нераспавшихся ядер в момент времени t . Формула (256.2) выражает закон радиоактивного распада , согласно которому число нераспавшихся ядер убывает со временем по экспоненте.

Интенсивность процесса радиоактивного распада характеризуют две величины: период полураспада и среднее время жизни радиоактивного ядра. Период полураспада - время, за которое исходное число радиоактивных ядер в среднем уменьшается вдвое. Тогда, согласно (256.2),

Периоды полураспада для естественно-радиоактивных элементов колеблются от десятимиллионных долей секунды до многих миллиардов лет.

Суммарная продолжительность жизни dN ядер равна . Проинтегрировав это выражение по всем возможным t (т. е. от 0 до ) и разделив на начальное число ядер , получим среднее время жизни радиоактивного ядра:

(учтено (256.2)). Таким образом, среднее время жизни радиоактивного ядра есть величина, обратная постоянной радиоактивного распада .

Активностью А нуклида (общее название атомных ядер, отличающихся числом протонов Z и нейтронов N ) в радиоактивном источнике называется число распадов, происходящих с ядрами образца в 1 с:

(256.3)

Единица активности в СИ - беккерель (Бк): 1 Бк - активность нуклида, при которой за 1 с происходит один акт распада. До сих пор в ядерной физике применяется и внесистемная единица активности нуклида в радиоактивном источнике - кюри (Ки): 1 Ки = 3,7×10 10 Бк. Радиоактивный распад происходит в соответствии с так называемыми правилами смещения , позволяющими установить, какое ядро возникает в результате распада данного материнского ядра. Правила смещения:


для -распада

(256.4)

для -распада

(256.5)

где - материнское ядро, Y - символ дочернего ядра, - ядро гелия ( -частица), - символическое обозначение электрона (заряд его равен –1, а массовое число-нулю). Правила смещения являются ничем иным, как следствием двух законов, выполняющихся при радиоактивных распадах,- сохранения электрического заряда и сохранения массового числа: сумма зарядов (массовых чисел) возникающих ядер и частиц равна заряду (массовому числу) исходного ядра.

Возникающие в результате радиоактивного распада ядра могут быть, в свою очередь, радиоактивными. Это приводит к возникновению цепочки , или ряда, радиоактивных превращений , заканчивающихся стабильным элементом. Совокупность элементов, образующих такую цепочку, называется радиоактивным семейством .

Из правил смещения (256.4) и (256.5) вытекает, что массовое число при -распаде уменьшается на 4, а при -распаде не меняется. Поэтому для всех ядер одного и того же радиоактивного семейства остаток от деления массового числа на 4 одинаков. Таким образом, существует четыре различных радиоактивных семейства, для каждого из которых массовые числа задаются одной из следующих формул:

А = 4n , 4n +1, 4n +2, 4n +3,

где п - целое положительное число. Семейства называются по наиболее долгоживущему (с наибольшим периодом полураспада) «родоначальнику»: семейства тория (от ), нептуния (от ), урана (от ) и актиния (от ). Конечными нуклидами соответственно являются , , , , т. е. единственное семейство нептуния (искусственно-радиоактивные ядра) заканчивается нуклидом Bi , а все остальные (естественно-радиоактивные ядра) - нуклидами Рb .

§ 257. Закономерности -распада

В настоящее время известно более двухсот -активных ядер, главным образом тяжелых (A > 200, Z > 82). Только небольшая группа -активных ядер приходится на области с А = 140 ¸ 160 (редкие земли). -Распад подчиняется правилу смещения (256.4). Примером -распада служит распад изотопа урана с образованием Th :

Скорости вылетающих при распаде -частиц очень велики и колеблются для разных ядер в пределах от 1,4×10 7 до 2×10 7 м/с, что соответствует энергиям от 4 до 8,8 МэВ. Согласно современным представлениям, -частицы образуются в момент радиоактивного распада при встрече движущихся внутри ядра двух протонов и двух нейтронов.

Частицы, испускаемые конкретным ядром, обладают, как правило, определенной энергией. Более тонкие измерения, однако, показали, что энергетический спектр -частиц, испускаемых данным радиоактивным элементом, обнаруживает «тонкую структуру», т. е. испускается несколько групп -частиц, причем в пределах каждой группы их энергии практически постоянны. Дискретный спектр -частиц свидетельствует о том, что атомные ядра обладают дискретными энергетическими уровнями.

Для -распада характерна сильная зависимость между периодом полураспада и энергией Е вылетающих частиц. Эта взаимосвязь определяется эмпирическим законом Гейгера - Нэттола (1912) (Д. Нэттол (1890-1958) - английский физик, Х. Гейгер (1882-1945) - немецкий физик), который обычно выражают в виде связи между пробегом (расстоянием, проходимым частицей в веществе до ее полной остановки) -частиц в воздухе и постоянной радиоактивного распада :

(257.1)

где А и В - эмпирические константы, . Согласно (257.1), чем меньше период полураспада радиоактивного элемента, тем больше пробег, а следовательно, и энергия испускаемых им -частиц. Пробег -частиц в воздухе (при нормальных условиях) составляет несколько сантиметров, в более плотных средах он гораздо меньше, составляя сотые доли миллиметра ( -частицы можно задержать обычным листом бумаги).

Опыты Резерфорда по рассеянию -частиц на ядрах урана показали, что -частицы вплоть до энергии 8,8 МэВ испытывают на ядрах резерфордовское рассеяние, т. е. силы, действующие на -частицы со стороны ядер, описываются законом Кулона. Подобный характер рассеяния -частиц указывает на то, что они еще не вступают в область действия ядерных сил, т. е. можно сделать вывод, что ядро окружено потенциальным барьером, высота которого не меньше 8,8 МэВ. С другой стороны, -частицы, испускаемые ураном, имеют энергию 4,2 МэВ. Следовательно, -частицы вылетают из -радиоактивного ядра с энергией, заметно меньшей высоты потенциального барьера. Классическая механика этот результат объяснить не могла.

Объяснение -распада дано квантовой механикой, согласно которой вылет -частицы из ядра возможен благодаря туннельному эффекту (см. §221) - проникновению -частицы сквозь потенциальный барьер. Всегда имеется отличная от нуля вероятность того, что частица с энергией, меньшей высоты потенциального барьера, пройдет сквозь него, т. е., действительно, из -радиоактивного ядра -частицы могут вылетать с энергией, меньшей высоты потенциального барьера. Этот эффект целиком обусловлен волновой природой -частиц.

Вероятность прохождения -частицы сквозь потенциальный барьер определяется его формой и вычисляется на основе уравнения Шредингера. В простейшем случае потенциального барьера с прямоугольными вертикальными стенками (см. рис. 298, а ) коэффициент прозрачности, определяющий вероятность прохождения сквозь него, определяется рассмотренной ранее формулой (221.7):

Анализируя это выражение, видим, что коэффициент прозрачности D тем больше (следовательно, тем меньше период полураспада), чем меньший по высоте (U ) и ширине (l ) барьер находится на пути -частицы. Кроме того, при одной и той же потенциальной кривой барьер на пути частицы тем меньше, чем больше ее энергия Е . Таким образом качественно подтверждается закон Гейгера - Нэттола (см. (257.1)).

§ 258. -Распад. Нейтрино

Явление -распада (в дальнейшем будет показано, что существует и (-распад) подчиняется правилу смещения (256.5)

и связано с выбросом электрона. Пришлось преодолеть целый ряд трудностей с трактовкой -распада.

Во-первых, необходимо было обосновать происхождение электронов, выбрасываемых в процессе -распада. Протонно-нейтронное строение ядра исключает возможность вылета электрона из ядра, поскольку в ядре электронов нет. Предположение же, что электроны вылетают не из ядра, а из электронной оболочки, несостоятельно, поскольку тогда должно было бы наблюдаться оптическое или рентгеновское излучение, что не подтверждают эксперименты.

Во-вторых, необходимо было объяснить непрерывность энергетического спектра испускаемых электронов (типичная для всех изотопов кривая распределения -частиц по энергиям приведена на рис. 343).

Каким же образом -активные ядра, обладающие до и после распада вполне определенными энергиями, могут выбрасывать электроны со значениями энергии от нуля до некоторого максимального ? Т. е. энергетический спектр испускаемых электронов является непрерывным? Гипотеза о том, что при -распаде электроны покидают ядро со строго определенными энергиями, но в результате каких-то вторичных взаимодействий теряют ту или иную долю своей энергии, так что их первоначальный дискретный спектр превращается в непрерывный, была опровергнута прямыми калориметрическими опытами. Так как максимальная энергия определяется разностью масс материнского и дочернего ядер, то распады, при которых энергия электрона < , как бы протекают с нарушением закона сохранения энергии. Н. Бор даже пытался обосновать это нарушение, высказывая предположение, что закон сохранения энергии носит статистический характер и выполняется лишь в среднем для большого числа элементарных процессов. Отсюда видно, насколько принципиально важно было разрешить это затруднение.

В-третьих, необходимо было разобраться с несохранением спина при -распаде. При -распаде число нуклонов в ядре не изменяется (так как не изменяется массовое число A ), поэтому не должен изменяться и спин ядра, который равен целому числу при четном А и полуцелому при нечетном А . Однако выброс электрона, имеющего спин /2, должен изменить спин ядра на величину /2.

Последние два затруднения привели В. Паули к гипотезе (1931) о том, что при -распаде вместе с электроном испускается еще одна нейтральная частица - нейтрино . Нейтрино имеет нулевой заряд, спин /2 и нулевую (а скорее< 10 -4 ) массу покоя; обозначается . Впоследствии оказалось, что при - распаде испускается не нейтрино, а антинейтрино (античастица по отношению к нейтрино; обозначается ).

Гипотеза о существовании нейтрино позволила Э. Ферми создать теорию -распада (1934), которая в основном сохранила свое значение и в настоящее время, хотя экспериментально существование нейтрино было доказано более чем через 20 лет (1956). Столь длительные «поиски» нейтрино сопряжены с большими трудностями, обусловленными отсутствием у нейтрино электрического заряда и массы. Нейтрино - единственная частица, не участвующая ни в сильных, ни в электромагнитных взаимодействиях; единственный вид взаимодействий, в котором может принимать участие нейтрино,- слабое взаимодействие. Поэтому прямое наблюдение нейтрино весьма затруднительно. Ионизирующая способность нейтрино столь мала, что один акт ионизации в воздухе приходится на 500 км пути. Проникающая же способность нейтрино столь огромна (пробег нейтрино с энергией 1 МэВ в свинце составляет порядка 1018м!), что затрудняет удержание этих частиц в приборах.

Для экспериментального выявления нейтрино (антинейтрино) применялся поэтому косвенный метод, основанный на том, что в реакциях (в том числе и с участием нейтрино) выполняется закон сохранения импульса. Таким образом, нейтрино было обнаружено при изучении отдачи атомных ядер при -распаде. Если при -распаде ядра вместе с электроном выбрасывается и антинейтрино, то векторная сумма трех импульсов - ядра отдачи, электрона и антинейтрино - должна быть равна нулю. Это действительно подтвердилось на опыте. Непосредственное обнаружение нейтрино стало возможным лишь значительно позднее, после появления мощных реакторов, позволяющих получать интенсивные потоки нейтрино.

Введение нейтрино (антинейтрино) позволило не только объяснить кажущееся несохранение спина, но и разобраться с вопросом непрерывности энергетического спектра выбрасываемых электронов. Сплошной спектр -частиц обязан распределению энергии между электронами и антинейтрино, причем сумма энергий обеих частиц равна . В одних актах распада большую энергию получает антинейтрино, в других - электрон; в граничной точке кривой на рис. 343, где энергия электрона равна , вся энергия распада уносится электроном, а энергия антинейтрино равна нулю.

Наконец, рассмотрим вопрос о происхождении электронов при -распаде. Поскольку электрон не вылетает из ядра и не вырывается из оболочки атома, было сделано предположение, что -электрон рождается в результате процессов, происходящих внутри ядра. Так как при -распаде число нуклонов в ядре не изменяется, a Z увеличивается на единицу (см. (256.5)), то единственной возможностью одновременного осуществления этих условий является превращение одного из нейтронов -активного ядра в протон с одновременным образованием электрона и вылетом антинейтрино:

(258.1)

Этот процесс сопровождается выполнением законов сохранения электрических зарядов, импульса и массовых чисел. Кроме того, данное превращение энергетически возможно, так как масса покоя нейтрона превышает массу атома водорода, т. е. протона и электрона вместе взятых. Данной разности в массах соответствует энергия, равная 0,782 МэВ. За счет этой энергии может происходить самопроизвольное превращение нейтрона в протон; энергия распределяется между электроном и антинейтрино.

Если превращение нейтрона в протон энергетически выгодно и вообще возможно, то должен наблюдаться радиоактивный распад свободных нейтронов (т.е. нейтронов вне ядра). Обнаружение этого явления было бы подтверждением изложенной теории -распада. Действительно, в 1950 г. в потоках нейтронов большой интенсивности, возникающих в ядерных реакторах, был обнаружен радиоактивный распад свободных нейтронов, происходящий по схеме (258.1). Энергетический спектр возникающих при этом электронов соответствовал приведенному на рис. 343, а верхняя граница энергии электронов оказалась равной рассчитанной выше (0,782 МэВ).

Законы радиоактивного распада ядер

Способность ядер самопроизвольно распадаться, испуская частицы, называется радиоактивностью. Радиоактивный распад - статистический процесс. Каждое радиоактивное ядро может распасться в любой момент и закономерность наблюдается только в среднем, в случае распада достаточно большого количества ядер.
Постоянная распада λ - вероятность распада ядра в единицу времени.
Если в образце в момент времени t имеется Nрадиоактивных ядер, то количество ядер dN, распавшихся за время dt пропорционально N.

dN = -λNdt. (13.1)

Проинтегрировав (1) получим закон радиоактивного распада

N(t) = N 0 e -λt . (13.2)

N 0 - количество радиоактивных ядер в момент времени t = 0.
Cреднее время жизни τ –

. (13.3)

Период полураспада T 1/2 - время, за которое первоначальное количество радиоактивных ядер уменьшится в два раза

T 1/2 = ln2/λ=0.693/λ = τln2. (13.4)

Активность A - среднее количество ядер распадающихся в единицу времени

A(t) = λN(t). (13.5)

Активность измеряется в кюри (Ки) и беккерелях (Бк)

1 Ки = 3.7*10 10 распадов/c, 1 Бк = 1 распад/c.

Распад исходного ядра 1 в ядро 2, с последующим его распадом в ядро 3, описывается системой дифференциальных уравнений

(13.6)

гдеN 1 (t) и N 2 (t) -количество ядер, а λ 1 иλ 2 - постоянные распада ядер 1 и 2 соответственно. Решением системы (6) с начальными условиями N 1 (0) = N 10 ; N 2 (0) = 0 будет

, (13.7a)

. (13.7б)

Рисунок 13. 1

Количество ядер 2 достигает максимального значения при .

Если λ 2 < λ 1 (), суммарная активностьN 1 (t)λ 1 + N 2 (t)λ 2 будет монотонно уменьшаться.
Если λ 2 >λ 1 ()), суммарная активность вначале растет за счет накопления ядер 2.
Если λ 2 >> λ 1 , при достаточно больших временах вклад второй экспоненты в (7б) становится пренебрежимо мал, по сравнению со вкладом первой и активности второго A 2 = λ 2 N 2 и первого изотопов A 1 = λ 1 N 1 практически сравняются. В дальнейшем активности как первого так и второго изотопов будут изменяться во времени одинаково.

A 1 (t) = N 10 λ 1 = N 1 (t)λ 1 = A 2 (t) = N 2 (t)λ 2 . (13.8)

То есть устанавливается так называемое вековое равновесие , при котором число ядер изотопов в цепочке распадов связано с постоянными распада (периодами полураспада) простым соотношением.

. (13.9)

Поэтому в естественном состоянии все изотопы, генетически связанные в радиоактивных рядах, обычно находятся в определенных количественных соотношениях, зависящих от их периодов полураспада.
В общем случае, когда имеется цепочка распадов 1→2→...n, процесс описывается системой дифференциальных уравнений

dN i /dt = -λ i N i +λ i-1 N i-1 . (13.10)

Решением системы (10) для активностей с начальными условиями N 1 (0) = N 10 ; N i (0) = 0 будет

(13.12)

Штрих означает, что в произведении, которое находится в знаменателе, опускается множитель с i = m.

Изотопы

ИЗОТОПЫ –разновидности одного и того же химического элемента, близкие по своим физико-химическим свойствам, но имеющие разную атомную массу. Название «изотопы» было предложено в 1912 английским радиохимиком Фредериком Содди, который образовал его из двух греческих слов: isos – одинаковый и topos – место. Изотопы занимают одно и то же место в клетке периодической системы элементов Менделеева.

Атом любого химического элемента состоит из положительно заряженного ядра и окружающего его облака отрицательно заряженных электронов (см .также АТОМА ЯДРО). Положение химического элемента в периодической системе Менделеева (его порядковый номер) определяется зарядом ядра его атомов. Изотопаминазываются поэтомуразновидности одного и того же химического элемента, атомы которых имеют одинаковый заряд ядра (и, следовательно, практически одинаковые электронные оболочки), но отличаются значениями массы ядра. По образному выражению Ф.Содди, атомы изотопов одинаковы «снаружи», но различны «внутри».

В 1932 был открыт нейтрончастица, не имеющая заряда, с массой, близкой к массе ядра атома водорода – протона, и созданапротонно-нейтронная модель ядра.В результатев науке установилось окончательное современное определение понятия изотопов: изотопы – это вещества, ядра атомов которых состоят из одинакового числа протонов и отличаются лишь числом нейтронов в ядре. Каждый изотоп принято обозначать набором символов , где X – символ химического элемента, Z – заряд ядра атома (число протонов), А – массовое число изотопа (общее число нуклонов – протонов и нейтронов в ядре, A = Z + N). Поскольку заряд ядра оказывается однозначно связанным с символом химического элемента, часто для сокращения используется просто обозначение A X.

Из всех известных нам изотопов только изотопы водорода имеют собственные названия. Так, изотопы 2 H и 3 H носят названия дейтерия и трития и получили обозначения соответственно D и T (изотоп 1 H называют иногда протием).

В природе встречаются как стабильные изотопы, так и нестабильные – радиоактивные, ядра атомов которых подвержены самопроизвольному превращению в другие ядра с испусканием различных частиц (или процессам так называемого радиоактивного распада). Сейчас известно около 270 стабильных изотопов, причем стабильные изотопы встречаются только у элементов с атомным номером Z Ј 83. Число нестабильных изотопов превышает 2000, подавляющее большинство их получено искусственным путем в результате осуществления различных ядерных реакций. Число радиоактивных изотопов у многих элементов очень велико и может превышать два десятка. Число стабильных изотопов существенно меньше, Некоторые химические элементы состоят лишь из одного стабильного изотопа (бериллий, фтор, натрий, алюминий, фосфор, марганец, золото и ряд других элементов). Наибольшее число стабильных изотопов – 10 обнаружено у олова, у железа, например, их – 4, у ртути – 7.

Открытие изотопов, историческая справка. В 1808 английский ученый натуралист Джон Дальтон впервые ввел определение химического элемента как вещества, состоящего из атомов одного вида. В 1869 химиком Д.И. Менделеевым была открыт периодический закон химических элементов. Одна из трудностей в обосновании понятия элемента как вещества, занимающего определенное место в клетке периодической системы, заключалась в наблюдаемой на опыте нецелочисленности атомных весов элементов. В 1866 английский физик и химик – сэр Вильям Крукс выдвинул гипотезу, что каждый природный химический элемент представляет собой некоторую смесь веществ, одинаковых по своим свойствам, но имеющих разные атомные масс, однако в то время такое предположение не имело еще экспериментального подтверждения и поэтому прошло мало замеченным.

Важным шагом на пути к открытию изотопов стало обнаружение явления радиоактивности и сформулированная Эрнстом Резерфордом и Фредериком Содди гипотеза радиоактивного распада:радиоактивность есть не что иное, как распад атома на заряженную частицу и атом другого элемента, по своим химическим свойствам отличающийся от исходного. В результате возникло представление о радиоактивных рядах или радиоактивных семействах, в начале которых есть первый материнский элемент, являющийся радиоактивным, и в конце – последний стабильный элемент. Анализ цепочек превращений показал, что в их ходе в одной клеточке периодической системы могут оказываться одни и те же радиоактивные элементы, отличающиеся лишь атомными массами. Фактически это и означало введение понятия изотопов.

Независимое подтверждение существования стабильных изотопов химических элементов было затем получено в экспериментах Дж. Дж. Томсона и Астона в 1912–1920 с пучками положительно заряженных частиц (или так называемых каналовых лучей) , выходящих из разрядной трубки.

В 1919 Астон сконструировал прибор, названный масс-спектрографом(илимасс-спектрометром). В качестве источника ионов по-прежнему использовалась разрядная трубка, однако Астон нашел способ, при котором последовательное отклонение пучка частиц в электрическом и магнитном полях приводило к фокусировке частиц с одинаковым значением отношения заряда к массе (независимо от их скорости) в одной и той же точке на экране. Наряду с Астоном масс-спектрометр несколько другой конструкции в те же годы был создан американцем Демпстером. В результате последующего использования и усовершенствования масс-спектрометров усилиями многих исследователей к 1935 году была составлена почти полная таблица изотопных составов всех известных к тому времени химических элементов.

Методы разделения изотопов. Для изучения свойств изотопов и особенно для их применения в научных и прикладных целях требуется их получение в более или менее заметных количествах. В обычных масс-спектрометрах достигается практически полное разделение изотопов, однако количество их ничтожно мало. Поэтому усилия ученых и инженеров были направлены на поиски других возможных методов разделения изотопов. В первую очередь были освоены физико-химические методы разделения, основанные на различиях в таких свойствах изотопов одного итого же элемента, как скорости испарения, константы равновесия, скорости химических реакций и т.п. Наиболее эффективными среди них оказались методы ректификации и изотопного обмена, которые нашли широкое применение в промышленном производстве изотопов легких элементов: водорода, лития, бора, углерода, кислорода и азота.

Другую группу методов образуют так называемые молекулярно-кинетические методы: газовая диффузия, термодиффузия, масс-диффузия (диффузия в потоке пара), центрифугирование. Методы газовой диффузии, основанные на различной скорости диффузии изотопных компонентов в высокодисперсных пористых средах, были использованы в годы второй мировой войны при организации промышленного производства разделения изотопов урана в США в рамках так называемого Манхэттенского проекта по созданию атомной бомбы. Для получения необходимых количеств урана, обогащенного до 90% легким изотопом 235 U – главной «горючей» составляющей атомной бомбы, были построены заводы, занимавшие площади около четырех тысяч гектар. На создание атомного центра с заводами для получения обогащенного урана было ассигновано более 2-х млрд. долл. После войны в СССР были разработать и построены заводы по производству обогащенного урана для военных целей, также основанные на диффузионном методе разделения. В последние годы этот метод уступил место более эффективному и менее затратному методу центрифугирования. В этом методе эффект разделения изотопной смеси достигается за счет различного действия центробежных сил на компоненты изотопной смеси, заполняющей ротор центрифуги, который представляет собой тонкостенный и ограниченный сверху и снизу цилиндр, вращающийся с очень высокой скоростью в вакуумной камере. Сотни тысяч соединенных в каскады центрифуг, ротор каждой из которых совершает более тысячи оборотов в секунду, используются в настоящее время на современных разделительных производствах как в России, так и в других развитых странах мира. Центрифуги используются не только для получения обогащенного урана, необходимого для обеспечения работы ядерных реакторов атомных электростанций, но и для производства изотопов примерно тридцати химических элементов средней части периодической системы. Для разделения различных изотопов используются также установки электромагнитного разделения с мощными источниками ионов, в последние годы получили распространение также лазерные методы разделения.

Применение изотопов. Разнообразные изотопы химических элементов находят широкое применение в научных исследованиях, в различных областях промышленности и сельского хозяйства, в ядерной энергетике, современной биологии и медицине, в исследованиях окружающей среды и других областях. В научных исследованиях (например, в химическом анализе) требуются, как правило, небольшие количества редких изотопов различных элементов, исчисляемые граммами и даже миллиграммами в год. Вместе с тем, для ряда изотопов, широко используемых в ядерной энергетике, медицине и других отраслях, потребность в их производстве может составлять многие килограммы и даже тонны. Так, в связи с использованием тяжелой воды D 2 O в ядерных реакторах ее общемировое производство к началу 1990-х прошлого века составляло около 5000 т в год. Входящий в состав тяжелой воды изотоп водорода дейтерий, концентрация которого в природной смеси водорода составляет всего 0,015%, наряду с тритием станет в будущем, по мнению ученых, основным компонентом топлива энергетических термоядерных реакторов, работающих на основе реакций ядерного синтез. В этом случае потребность в производстве изотопов водорода окажется огромной.

В научных исследованиях стабильные и радиоактивные изотопы широко применяются в качестве изотопных индикаторов (меток) при изучении самых различных процессов, происходящих в природе.

В сельском хозяйстве изотопы («меченые» атомы) применяются, например, для изучения процессов фотосинтеза, усвояемости удобрений и для определения эффективности использования растениями азота, фосфора, калия, микроэлементов и др. веществ.

Изотопные технологии находят широкое применение в медицине. Так в США, согласно статистическим данным, проводится более 36 тыс. медицинских процедур в день и около 100 млн. лабораторных тестов с использованием изотопов. Наиболее распространены процедуры, связанные с компьютерной томографией. Изотоп углерода C 13 , обогащенный до 99% (природное содержание около 1%), активно используется в так называемом «диагностическом контроле дыхания». Суть теста очень проста. Обогащенный изотоп вводится в пищу пациента и после участия в процессе обмена веществ в различных органах тела выделяется в виде выдыхаемого пациентом углекислого газа СО 2 , который собирается и анализируется с помощью спектрометра. Различие в скоростях процессов, связанных с выделением различных количеств углекислого газа, помеченных изотопом С 13 , позволяют судить о состоянии различных органов пациента. В США число пациентов, которые будут проходить этот тест, оценивается в 5 млн. человек в год. Сейчас для производства высоко обогащенного изотопа С 13 в промышленных масштабах используются лазерные методы разделения.


Похожая информация.


2024 med103.ru. Я самая красивая. Мода и стиль. Разные хитрости. Уход за лицом.