С увеличением температуры сопротивление металлов увеличивается. Зависимость сопротивления металлов от температуры

Электрическое сопротивление практически всех материалов зависит от температуры. Природа этой зависимости у разных материалов различна.

У металлов, имеющих кристаллическую структуру, свободный пробег электронов как носителей заряда ограничен соударениями их с ионами, находящимися в узлах кристаллической решетки. При столкновениях кинетическая энергия электронов передается решетке. После каждого столкновения электроны под действием сил электрического поля снова набирают скорость и при следующих соударениях отдают приобретенную энергию ионам кристаллической решетки, увеличивая их колебания, что приводит к увеличению температуры вещества. Таким образом, электроны можно считать посредниками в преобразовании электрической энергии в тепловую. Увеличение температуры сопровождается усилением хаотического теплового движения частиц вещества, что приводит к увеличению числа столкновений электронов с ними и затрудняет упорядоченное движение электронов.

У большинства металлов в пределах рабочих температур удельное сопротивление возрастает по линейному закону

где и- удельные сопротивления при начальной и конечной температурах;

- постоянный для данного металла коэффициент, называемый температурным коэффициентом сопротивления (ТКС);

Т1и Т2 - начальная и конечная температуры.

Для проводников второго рода увеличение температуры приводит к увеличению их ионизации, поэтому ТКС этого вида проводников отрицателен.

Значения удельного сопротивления веществ и их ТКС приводятся в справочниках. Обычно значения удельного сопротивления принято давать при температуре +20 °С.

Сопротивление проводника определяется выражением

R2 = R1
(2.1.2)

Задача 3 Пример

Определить сопротив­ление медного провода двухпроводной линии передачи при + 20°С и +40 °С, если сечение провода S =

120 мм, а длина линииl = 10 км.

Решение

По справочным таблицам находим удельное сопротивление меди при + 20 °С и температурный коэффициент сопротивления :

= 0,0175 Ом мм/м;= 0,004 град.

Определим сопротивление провода при Т1 = +20 °С по формуле R = , учитывая длину прямого и обратного проводов линии:

R1 = 0, 0175
2 = 2,917 Ом.

Сопротивление проводов при температуре + 40°С найдем по формуле (2.1.2)

R2 = 2,917= 3,15 Ом.

Задание

Воздушная трехпроводная линия длиной L выполнена проводом, марка которого дана в таблице 2.1. Необходимо найти величину, обозначенную знаком «?», используя приведенный пример и выбрав по таблице 2.1 вариант с указанными в нем данными.

Следует учесть, что в задаче, в отличие от примера, предусмотрены расчеты, связанные с одним проводом линии. В марках неизолированных проводов буква указывает на материал провода (А – алюминий; М – медь), а число – сечение провода в мм.

Таблица 2.1

Длина линии L, км

Марка провода

Температура провода Т, °С

Сопротивление провода RТпри температуре Т, Ом

Изучение материала темы завершается работой с тестами № 2 (ТОЭ-

ЭТМ/ПМ» и № 3 (ТОЭ – ЭТМ/ ИМ)

Одна из характеристик любого проводящего электрический ток материала - это зависимость сопротивления от температуры. Если ее изобразить в виде графика на где по горизонтальной оси отмечаются промежутки времени (t), а по вертикальной - значение омического сопротивления (R), то получится ломаная линия. Зависимость сопротивления от температуры схематично состоит из трех участков. Первый соответствует небольшому нагреву - в этом время сопротивление изменяется очень незначительно. Так происходит до определенного момента, после которого линия на графике резко идет вверх - это второй участок. Третья, последняя составляющая - это прямая, уходящая вверх от точки, на которой остановился рост R, под относительно небольшим углом к горизонтальной оси.

Физический смысл данного графика следующий: зависимость сопротивления от температуры у проводника описывается простым до тех пор, пока величина нагрева не превысит какое-то значение, характерное именно для данного материала. Приведем абстрактный пример: если при температуре +10°C сопротивление вещества составляет 10 Ом, то до 40°C значение R практически не изменится, оставаясь в пределах погрешности измерений. Но уже при 41°C возникнет скачок сопротивления до 70 Ом. Если же дальнейший рост температуры не прекратится, то на каждый последующий градус придутся дополнительные 5 Ом.

Данное свойство широко используется в различных электротехнических устройствах, поэтому закономерно привести данные по меди как одному из самых распространенных материалов в Так, для медного проводника нагрев на каждый дополнительный градус приводит к росту сопротивления на полпроцента от удельного значения (можно найти в справочных таблицах, приводится для 20°C, 1 м длины сечением 1 кв.мм).

При возникновении в металлическом проводнике появляется электрический ток - направленное перемещение элементарных частиц, обладающих зарядом. Ионы, находящиеся в узлах металла, не в состоянии долго удерживать электроны на своих внешних орбитах, поэтому они свободно перемещаются по всему объему материала от одного узла к другому. Это хаотичное движение обусловлено внешней энергией - теплом.

Хотя факт перемещения налицо, оно не является направленным, поэтому не рассматривается в качестве тока. При появлении электрического поля электроны ориентируются в соответствии с его конфигурацией, формируя направленное движение. Но так как тепловое воздействие никуда не исчезло, то хаотично перемещающиеся частицы сталкиваются с направленными полем. Зависимость сопротивления металлов от температуры показывает величину помех прохождению тока. Чем больше температура, тем выше R проводника.

Очевидный вывод: снижая степень нагрева, можно уменьшить и сопротивление. (около 20°K) как раз и характеризуется существенным снижением теплового хаотичного движения частиц в структуре вещества.

Рассматриваемое свойство проводящих материалов нашло широкое применение в электротехнике. Например, зависимость сопротивления проводника от температуры используется в электронных датчиках. Зная ее значение для какого-либо материала, можно изготовить терморезистор, подключить его к цифровому или аналоговому считывающему устройству, выполнить соответствующую градуировку шкалы и использовать в качестве альтернативы В основе большинства современных термодатчиков заложен именно такой принцип, ведь надежность выше, а конструкция проще.

Кроме того, зависимость сопротивления от температуры дает возможность рассчитывать нагрев обмоток электродвигателей.

> Зависимость сопротивления от температуры

Узнайте, как сопротивление зависит от температуры : сравнение зависимости сопротивления материалов и удельного сопротивления от температуры, полупроводник.

Сопротивление и удельное сопротивление основываются на температуре, причем это несет линейный характер.

Задача обучения

  • Сравните температурную зависимость удельного и обычного сопротивления при больших и малых колебаниях.

Основные пункты

  • При перемене температуры на 100°C удельное сопротивление (ρ) изменяется с ΔT как: p = p 0 (1 + αΔT), где ρ 0 – исходное удельное сопротивление, а α – температурный коэффициент удельного сопротивления.
  • При серьезных изменениях температуры заметно нелинейное изменение удельного сопротивления.
  • Сопротивление объекта выступает прямо пропорциональным удельному, поэтому демонстрирует такую же температурную зависимость.

Термины

  • Полупроводник – вещество с электрическими свойствами, которые характеризируют его как хорошего проводника или изолятора.
  • Температурный коэффициент удельного сопротивления – эмпирическая величина (α), описывающая изменение сопротивления или удельного сопротивления с температурным показателем.
  • Удельное сопротивление – степень, с которой материал сопротивляется электрическому потоку.

Сопротивление материалов основывается на температуре, поэтому получается проследить зависимость удельного сопротивления от температуры. Некоторые способны стать сверхпроводниками (нулевое сопротивление) при очень низких температурах, а другие – при высоких. Скорость вибрации атомов повышается на больших дистанциях, поэтому перемещающиеся сквозь металл электроны чаще сталкиваются и повышают сопротивление. Удельное сопротивление меняется с изменением температуры ΔT:

Сопротивление конкретного образца ртути достигает нуля при крайне низком температурном показателе (4.2 К). Если показатель выше этой отметки, то наблюдается внезапный скачек сопротивления, а далее практически линейный рост с температурой

p = p 0 (1 + αΔT), где ρ 0 – исходное удельное сопротивление, а α – температурный коэффициент удельного сопротивления. При серьезных переменах температуры α способно меняться, а для поиска p возможно потребуется нелинейное уравнение. Именно поэтому иногда оставляют суффикс температуры, при которой изменилось вещество (к примеру, α15).

Стоит отметить, что α положительно для металлов, а удельное сопротивление растет вместе с температурным показателем. Обычно температурный коэффициент составляет +3 × 10 -3 К -1 до +6 × 10 -3 К -1 для металлов с примерно комнатной температурой. Есть сплавы, которые разрабатывают специально, чтобы снизить зависимость от температуры. Например, у манганина α приближено к нулю.

Не забывайте также, что α выступает отрицательным для полупроводников, то есть, их удельное сопротивление уменьшается с ростом температурной отметки. Это отличные проводники при высоких температурах, потому что повышенное температурное смешивание увеличивает количество свободных зарядов, доступных для транспортировки тока.

Сопротивление объекта также основывается на температуре, так как R 0 располагается в прямой пропорциональности p. Мы знаем, что для цилиндра R = ρL/A. Если L и A сильно не изменяются с температурой, то R обладает одинаковой температурной зависимостью с ρ. Выходит:

R = R 0 (1 + αΔT), где R 0 – исходное сопротивление, а R – сопротивление после изменения температуры T.

Давайте рассмотрим сопротивление датчика температуры. Очень многие термометры функционируют по этой схеме. Наиболее распространенный пример – термистор. Это полупроводниковый кристалл с сильной зависимостью от температуры. Устройство небольшое, поэтому быстро переходит в тепловой баланс с человеческой частью, к которой прикасается.

Термометры основаны на автоматическом измерении температурного сопротивления термистора

Сопротив­ление металлов связано с тем, что электроны, движущиеся в провод­нике, взаимодействуют с ионами кристаллической решетки и теряют при этом часть энергии, которую они приобретают в электрическом поле.

Опыт показывает, что сопротив­ление металлов зави­сит от температуры. Каждое вещество можно харак­теризовать постоянной для него вели­чиной, называемой температурным коэффициентом сопротивления α . Этот коэффициент равен относитель­ному изменению удельного сопро­тивления проводника при его нагре­вании на 1 К: α =

где ρ 0 - удельное сопротивление при температуре T 0 = 273 К (0°С), ρ - удельное сопротивление при данной температуре T. Отсюда зависимость удельного сопротивления металли­ческого проводника от температуры выражается линейной функцией: ρ = ρ 0 (1+ αT).

Зависимость сопротивления от температуры выражается такой же функцией:

R = R 0 (1+ αT).

Температурные коэффициенты со­противления чистых металлов срав­нительно мало отличаются друготдруга и примерно равны 0,004 K -1 . Изменение сопротивления про­водников при изменении температу­ры приводит к тому, что их вольт-амперная характеристика не линейна. Это особенно заметно в тех слу­чаях, когда температура проводни­ков значительно изменяется, напри­мер при работе лампы накаливания. На рисунке приведена ее вольт - амперная характеристика. Как видно из рисунка, сила тока в этом случае не прямо пропорциональна напря­жению. Не следует, однако, думать, что этот вывод противоречит закону Ома. Зависимость, сформулированная в законе Ома, справедлива только при постоян­ном сопротивлении. Зависимость сопротивления ме­таллических проводников от темпе­ратуры используют в различных из­мерительных и автоматических уст­ройствах. Наиболее важным из них является термометр сопротивления . Основной частью термометра со­противления служит платиновая про­волока, намотанная на керамиче­ский каркас. Проволоку помещают в среду, температуру кото­рой нужно определить. Измеряя со­противление этой проволоки и зная ее сопротивление при t 0 = 0 °С (т. е. R 0), рассчитывают по последней формуле температуру среды.

Сверхпроводимость. Однако до конца XIX в. нельзя было прове­рить, как зависит сопротивление про­водников от температуры в области очень низких температур. Только в начале XX в. голландскому учено­му Г. Камерлинг-Оннесу удалось пре­вратить в жидкое состояние наибо­лее трудно конденсируемый газ - гелий. Температура кипения жидкого гелия равна 4,2 К. Это и дало воз­можность измерить сопротивление некоторых чистых металлов при их охлаждении до очень низкой темпе­ратуры.

В 1911г работа Камерлинг-Оннеса завершилась крупнейшим откры­тием. Исследуя сопротивление рту­ти при ее постоянном охлаждении, он обнаружил, что при температуре 4,12 К сопротивление ртути скачком падало до нуля. В даль­нейшем ему удалось это же явление наблюдать и у ряда других метал­лов при их охлаждении до темпе­ратур, близких к абсолютному нулю. Явление полной потери металлом электрического сопротивления при определенной температуре получило название сверхпроводимости.



Не все материалы могут стать сверхпроводниками, но их число до­статочно велико. Однако у многих из них было обнаружено свойство, которое значительно препятствовало их применению. Выяснилось, что у большинства чистых металлов сверхпроводимость исчезает, когда они находятся в силь­ном магнитном поле. Поэтому, когда по сверх­проводнику течет значительный ток, он создает вокруг себя магнитное поле и сверхпроводимость в нем исчезает. Всё же это препятствие оказалось преодолимым: было выяснено, что не­которые сплавы, например ниобия и циркония, ниобия и титана и др., обладают свойством сохранять свою сверхпроводимость при больших значениях силы тока. Это позволило более широко использовать сверх­проводимость.

Каждое вещество имеет свое удельное сопротивление. Причем сопротивление будет зависеть от температуры проводника. Убедимся в этом, проведя следующий опыт.

Пропустим ток через стальную спираль. В цепи со спиралью подключим последовательно амперметр . Он покажет некоторое значение. Теперь будем нагревать спираль в пламени газовой горелки. Значение силы тока, которое покажет амперметр, уменьшится. То есть, сила тока будет зависеть от температуры проводника.

Изменение сопротивления в зависимости от температуры

Пусть при температуре 0 градусов, сопротивление проводника равняется R0, а при температуре t сопротивление равно R, тогда относительное изменение сопротивления будет прямо пропорционально изменению температуры t:

  • (R-R0)/R=a*t.

В данной формуле а - коэффициент пропорциональности, который называют еще температурным коэффициентом. Он характеризует зависимость сопротивления, которым обладает вещество, от температуры.

Температурный коэффициент сопротивления численно равен относительному изменению сопротивления проводника при нагревании его на 1 Кельвин.

Для всех металлов температурный коэффициент больше нуля. При изменениях температуры он будет незначительно меняться. Поэтому, если изменение температуры невелико, то температурный коэффициент можно считать постоянным, и равным среднему значению из этого интервала температур.

Растворы электролитов с ростом температуры сопротивление уменьшается. То есть для них температурный коэффициент будет меньше нуля.

Сопротивление проводника зависит от удельного сопротивления проводника и от размеров проводника. Так как размеры проводника при нагревании меняются незначительно, то основной составляющей изменения сопротивления проводника является удельное сопротивление.

Зависимость удельного сопротивления проводника от температуры

Попытаемся найти зависимость удельного сопротивления проводника от температуры.

Подставим в полученную выше формулу значения сопротивлений R=p*l/S R0=p0*l/S.

Получим следующую формулу:

  • p=p0(1+a*t).

Данная зависимость представлена на следующем рисунке.

Попробуем разобраться, почему увеличивается сопротивление

Когда мы повышаем температуру, то увеличивается амплитуда колебаний ионов в узлах кристаллической решетки. Следовательно, свободные электроны будут чаще с ними сталкиваться. При столкновении они будет терять направленность своего движения. Следовательно, сила тока будет уменьшаться.

2024 med103.ru. Я самая красивая. Мода и стиль. Разные хитрости. Уход за лицом.