Найти обратную матрицу 2 на 2. Высшая математика

Нахождение обратной матрицы - задача, которая чаще решается двумя методами:

  • методом алгебраических дополнений, при котором требуется находить определители и транспонировать матрицы;
  • методом исключения неизвестных Гаусса, при котором требуется производить элементарные преобразования матриц (складывать строки, умножать строки на одно и то же число и т. д.).

Для особо любознательных существуют и другие методы, например, метод линейных преобразований. На этом уроке разберём три упомянутых метода и алгоритмы нахождения обратной матрицы этими методами.

Обратной матрицей А , называется такая матрица

А
. (1)

Обратной матрицей , которую требуется отыскать для данной квадратной матрицы А , называется такая матрица

произведение на которую матрицы А справа является единичной матрицей, т.е,
. (1)

Единичной матрицей называется диагональная матрица, у которой все диагональные элементы равны единице.

Теорема. Для каждой неособенной (невырожденной, несингулярной) квадратной матрицы можно найти обратную матрицу, и притом только одну. Для особенной (вырожденной, сингулярной) квадратной матрицы обратная матрица не существует.

Квадратная матрица называется неособенной (или невырожденной , несингулярной ), если её определитель не равен нулю, и особенной (или вырожденной , сингулярной ), если её определитель равен нулю.

Обратная матрица может быть найдена только для квадратной матрицы. Естественно, обратная матрица также будет квадратной и того же порядка, что и данная матрица. Матрица, для которой может быть найдена обратная матрица, называется обратимой матрицей.

Для обратной матрицы существует уместная аналогия с обратным числом. Для каждого числа a , не равного нулю, существует такое число b , что произведение a и b равно единице: ab = 1 . Число b называется обратным для числа b . Например, для числа 7 обратным является число 1/7, так как 7*1/7=1.

Нахождение обратной матрицы методом алгебраических дополнений (союзной матрицы)

Для неособенной квадратной матрицы А обратной является матрица

где - определитель матрицы А , а - матрица, союзная с матрицей А .

Союзной с квадратной матрицей A называется матрица того же порядка, элементами которой являются алгебраические дополнения соответствующих элементов определителя матрицы , транспонированной относительно матрицы A. Таким образом, если

то

и

Алгоритм нахождения обратной матрицы методом алгебраических дополнений

1. Найти определитель данной матрицы A . Если определитель равен нулю, нахождение обратной матрицы прекращается, так как матрица вырожденная и обратная для неё не существует.

2. Найти матрицу, транспонированную относительно A .

3. Вычислить элементы союзной матрицы как алгебраические дополнения марицы, найденной на шаге 2.

4. Применить формулу (2): умножить число, обратное определителю матрицы A , на союзную матрицу, найденную на шаге 4.

5. Проверить полученный на шаге 4 результат, умножив данную матрицу A на обратную матрицу. Если произведение этих матриц равно единичной матрицы, значит обратная матрица была найдена верно. В противном случае начать процесс решения снова.

Пример 1. Для матрицы

найти обратную матрицу.

Решение. Для нахождения обратной матрицы необходимо найти определитель матрицы А . Находим по правилу треугольников:

Следовательно, матрица А – неособенная (невырожденная, несингулярная) и для неё существует обратная.

Найдём матрицу, союзную с данной матрицей А .

Найдём матрицу , транспонированную относительно матрицы A :

Вычисляем элементы союзной матрицы как алгебраические дополнения матрицы, транспонированной относительно матрицы A :

Следовательно, матрица , союзная с матрицей A , имеет вид

Замечание. Порядок вычисления элементов и транспонирования матрицы может быть иным. Можно сначала вычислить алгебраические дополнения матрицы A , а затем транспонировать матрицу алгебраических дополнений. В результате должны получиться те же элементы союзной матрицы.

Применяя формулу (2), находим матрицу, обратную матрице А :

Нахождение обратной матрицы методом исключения неизвестных Гаусса

Первый шаг для нахождения обратной матрицы методом исключения неизвестных Гаусса - приписать к матрице A единичную матрицу того же порядка, отделив их вертикальной чертой. Мы получим сдвоенную матрицу . Умножим обе части этой матрицы на , тогда получим

,

Алгоритм нахождения обратной матрицы методом исключения неизвестных Гаусса

1. К матрице A приписать единичную матрицу того же порядка.

2. Полученную сдвоенную матрицу преобразовать так, чтобы в левой её части получилась единичная матрица, тогда в правой части на месте единичной матрицы автоматически получится обратная матрица. Матрица A в левой части преобразуется в единичную матрицу путём элементарных преобразований матрицы.

2. Если в процессе преобразования матрицы A в единичную матрицу в какой-либо строке или в каком-либо столбце окажутся только нули, то определитель матрицы равен нулю, и, следовательно, матрица A будет вырожденной, и она не имеет обратной матрицы. В этом случае дальнейшее нахождение обратной матрицы прекращается.

Пример 2. Для матрицы

найти обратную матрицу.

и будем её преобразовывать, так чтобы в левой части получилась единичная матрица. Начинаем преобразования.

Умножим первую строку левой и правой матрицы на (-3) и сложим её со второй строкой, а затем умножим первую строку на (-4) и сложим её с третьей строкой, тогда получим

.

Чтобы по возможности не было дробных чисел при последующих преобразованиях, создадим предварительно единицу во второй строке в левой части сдвоенной матрицы. Для этого умножим вторую строку на 2 и вычтем из неё третью строку, тогда получим

.

Сложим первую строку со второй, а затем умножим вторую строку на (-9) и сложим её с третьей строкой. Тогда получим

.

Разделим третью строку на 8, тогда

.

Умножим третью строку на 2 и сложим её со второй строкой. Получается:

.

Переставим местами вторую и третью строку, тогда окончательно получим:

.

Видим, что в левой части получилась единичная матрица, следовательно, в правой части получилась обратная матрица . Таким образом:

.

Можно проверить правильность вычислений, умножим исходную матрицу на найденную обратную матрицу:

В результате должна получиться обратная матрица.

Пример 3. Для матрицы

найти обратную матрицу.

Решение. Составляем сдвоенную матрицу

и будем её преобразовывать.

Первую строку умножаем на 3, а вторую на 2, и вычитаем из второй, а затем первую строку умножаем на 5, а третью на 2 и вычитаем из третьей строки, тогда получим

.

Первую строку умножаем на 2 и складываем её со второй, а затем из третьей строки вычитаем вторую, тогда получим

.

Видим, что в третьей строке в левой части все элементы получились равными нулю. Следовательно, матрица вырожденная и обратной матрицы не имеет. Дальнейшее нахождение обратной марицы прекращаем.

Матричная алгебра - Обратная матрица

Обратная матрица

Обратной матрицей называется матрица, которая при умножении как справа, так и слева на данную матрицу дает единичную матрицу.
Обозначим обратную матрицу к матрице А через , тогда согласно определению получим:

где Е – единичная матрица.
Квадратная матрица называется неособенной (невырожденной ), если ее определитель не равен нулю. В противном случае она называется особенной (вырожденной ) или сингулярной .

Имеет место теорема: всякая неособенная матрица имеет обратную матрицу.

Операция нахождения обратной матрицы называется обращением матрицы. Рассмотрим алгоритм обращения матрицы. Пусть дана неособенная матрица n -го порядка:

где Δ = det A ≠ 0.

Алгебраическим дополнением элемента матрицы n -го порядка А называется взятый с определенным знаком определитель матрицы (n –1)-го порядка, полученной вычеркиванием i -ой строки и j -го столбца матрицы А :

Составим так называемую присоединенную матрицу:

где– алгебраические дополнения соответствующих элементовматрицы А .
Заметим, что алгебраические дополнения элементов строк матрицы А размещаются в соответствующих столбцах матрицы Ã , то есть одновременно производится транспонирование матрицы.
Разделив все элементы матрицы Ã на Δ – величину определителя матрицы А , получим в результате обратную матрицу:

Отметим ряд особых свойств обратной матрицы:
1) для данной матрицы А ее обратная матрица является единственной;
2) если существует обратная матрица , то правая обратная и левая обратная матрицы совпадают с ней;
3) особенная (вырожденная) квадратная матрица не имеет обратной матрицы.

Основные свойства обратной матрицы:
1) определитель обратной матрицы и определитель исходной матрицы являются обратными величинами;
2) обратная матрица произведения квадратных матриц равна произведениюобратных матриц сомножителей, взятому в обратном порядке:

3) транспонированная обратная матрица равна обратной матрице от данной транспонированной матрицы:

П р и м е р. Вычислить матрицу, обратную данной.

Эта тема является одной из самых ненавистных среди студентов. Хуже, наверное, только определители.

Фишка в том, что само понятие обратного элемента (и я сейчас не только о матрицах) отсылает нас к операции умножения. Даже в школьной программе умножение считается сложной операцией, а уж умножение матриц — вообще отдельная тема, которой у меня посвящён целый параграф и видеоурок.

Сегодня мы не будем вдаваться в подробности матричных вычислений. Просто вспомним: как обозначаются матрицы, как они умножаются и что из этого следует.

Повторение: умножение матриц

Прежде всего договоримся об обозначениях. Матрицей $A$ размера $\left[ m\times n \right]$ называется просто таблица из чисел, в которой ровно $m$ строк и $n$ столбцов:

\=\underbrace{\left[ \begin{matrix} {{a}_{11}} & {{a}_{12}} & ... & {{a}_{1n}} \\ {{a}_{21}} & {{a}_{22}} & ... & {{a}_{2n}} \\ ... & ... & ... & ... \\ {{a}_{m1}} & {{a}_{m2}} & ... & {{a}_{mn}} \\\end{matrix} \right]}_{n}\]

Чтобы случайно не перепутать строки и столбцы местами (поверьте, на экзамене можно и единицу с двойкой перепутать — что уж говорить про какие-то там строки), просто взгляните на картинку:

Определение индексов для клеток матрицы

Что происходит? Если разместить стандартную систему координат $OXY$ в левом верхнем углу и направить оси так, чтобы они охватывали всю матрицу, то каждой клетке этой матрицы можно однозначно сопоставить координаты $\left(x;y \right)$ — это и будет номер строки и номер столбца.

Почему система координат размещена именно в левом верхнем углу? Да потому что именно оттуда мы начинаем читать любые тексты. Это очень просто запомнить.

А почему ось $x$ направлена именно вниз, а не вправо? Опять всё просто: возьмите стандартную систему координат (ось $x$ идёт вправо, ось $y$ — вверх) и поверните её так, чтобы она охватывала матрицу. Это поворот на 90 градусов по часовой стрелке — его результат мы и видим на картинке.

В общем, как определять индексы у элементов матрицы, мы разобрались. Теперь давайте разберёмся с умножением.

Определение. Матрицы $A=\left[ m\times n \right]$ и $B=\left[ n\times k \right]$, когда количество столбцов в первой совпадает с количеством строк во второй, называются согласованными.

Именно в таком порядке. Можно сумничать и сказать, мол, матрицы $A$ и $B$ образуют упорядоченную пару $\left(A;B \right)$: если они согласованы в таком порядке, то совершенно необязательно, что $B$ и $A$, т.е. пара $\left(B;A \right)$ — тоже согласована.

Умножать можно только согласованные матрицы.

Определение. Произведение согласованных матриц $A=\left[ m\times n \right]$ и $B=\left[ n\times k \right]$ — это новая матрица $C=\left[ m\times k \right]$, элементы которой ${{c}_{ij}}$ считаются по формуле:

\[{{c}_{ij}}=\sum\limits_{k=1}^{n}{{{a}_{ik}}}\cdot {{b}_{kj}}\]

Другими словами: чтобы получить элемент ${{c}_{ij}}$ матрицы $C=A\cdot B$, нужно взять $i$-строку первой матрицы, $j$-й столбец второй матрицы, а затем попарно перемножить элементы из этой строки и столбца. Результаты сложить.

Да, вот такое суровое определение. Из него сразу следует несколько фактов:

  1. Умножение матриц, вообще говоря, некоммутативно: $A\cdot B\ne B\cdot A$;
  2. Однако умножение ассоциативно: $\left(A\cdot B \right)\cdot C=A\cdot \left(B\cdot C \right)$;
  3. И даже дистрибутивно: $\left(A+B \right)\cdot C=A\cdot C+B\cdot C$;
  4. И ещё раз дистрибутивно: $A\cdot \left(B+C \right)=A\cdot B+A\cdot C$.

Дистрибутивность умножения пришлось отдельно описывать для левого и правого множителя-суммы как раз из-за некоммутативности операции умножения.

Если всё же получается так, что $A\cdot B=B\cdot A$, такие матрицы называются перестановочными.

Среди всех матриц, которые там на что-то умножаются, есть особые — те, которые при умножении на любую матрицу $A$ снова дают $A$:

Определение. Матрица $E$ называется единичной, если $A\cdot E=A$ или $E\cdot A=A$. В случае с квадратной матрицей $A$ можем записать:

Единичная матрица — частый гость при решении матричных уравнений. И вообще частый гость в мире матриц.:)

А ещё из-за этой $E$ кое-кто придумал всю ту дичь, которая будет написана дальше.

Что такое обратная матрица

Поскольку умножение матриц — весьма трудоёмкая операция (приходится перемножать кучу строчек и столбцов), то понятие обратной матрицы тоже оказывается не самым тривиальным. И требующим некоторых пояснений.

Ключевое определение

Что ж, пора познать истину.

Определение. Матрица $B$ называется обратной к матрице $A$ , если

Обратная матрица обозначается через ${{A}^{-1}}$ (не путать со степенью!), поэтому определение можно переписать так:

Казалось бы, всё предельно просто и ясно. Но при анализе такого определения сразу возникает несколько вопросов:

  1. Всегда ли существует обратная матрица? И если не всегда, то как определить: когда она существует, а когда — нет?
  2. А кто сказал, что такая матрица ровно одна? Вдруг для некоторой исходной матрицы $A$ найдётся целая толпа обратных?
  3. Как выглядят все эти «обратные»? И как, собственно, их считать?

Насчёт алгоритмов вычисления — об этом мы поговорим чуть позже. Но на остальные вопросы ответим прямо сейчас. Оформим их в виде отдельных утверждений-лемм.

Основные свойства

Начнём с того, как в принципе должна выглядеть матрица $A$, чтобы для неё существовала ${{A}^{-1}}$. Сейчас мы убедимся в том, что обе эти матрицы должны быть квадратными, причём одного размера: $\left[ n\times n \right]$.

Лемма 1 . Дана матрица $A$ и обратная ей ${{A}^{-1}}$. Тогда обе эти матрицы — квадратные, причём одинакового порядка $n$.

Доказательство. Всё просто. Пусть матрица $A=\left[ m\times n \right]$, ${{A}^{-1}}=\left[ a\times b \right]$. Поскольку произведение $A\cdot {{A}^{-1}}=E$ по определению существует, матрицы $A$ и ${{A}^{-1}}$ согласованы в указанном порядке:

\[\begin{align} & \left[ m\times n \right]\cdot \left[ a\times b \right]=\left[ m\times b \right] \\ & n=a \end{align}\]

Это прямое следствие из алгоритма перемножения матриц: коэффициенты $n$ и $a$ являются «транзитными» и должны быть равны.

Вместе с тем определено и обратное умножение: ${{A}^{-1}}\cdot A=E$, поэтому матрицы ${{A}^{-1}}$ и $A$ тоже согласованы в указанном порядке:

\[\begin{align} & \left[ a\times b \right]\cdot \left[ m\times n \right]=\left[ a\times n \right] \\ & b=m \end{align}\]

Таким образом, без ограничения общности можем считать, что $A=\left[ m\times n \right]$, ${{A}^{-1}}=\left[ n\times m \right]$. Однако согласно определению $A\cdot {{A}^{-1}}={{A}^{-1}}\cdot A$, поэтому размеры матриц строго совпадают:

\[\begin{align} & \left[ m\times n \right]=\left[ n\times m \right] \\ & m=n \end{align}\]

Вот и получается, что все три матрицы — $A$, ${{A}^{-1}}$ и $E$ — являются квадратными размером $\left[ n\times n \right]$. Лемма доказана.

Что ж, уже неплохо. Мы видим, что обратимыми бывают лишь квадратные матрицы. Теперь давайте убедимся, что обратная матрица всегда одна.

Лемма 2 . Дана матрица $A$ и обратная ей ${{A}^{-1}}$. Тогда эта обратная матрица — единственная.

Доказательство. Пойдём от противного: пусть у матрицы $A$ есть хотя бы два экземпляра обратных —$B$ и $C$. Тогда, согласно определению, верны следующие равенства:

\[\begin{align} & A\cdot B=B\cdot A=E; \\ & A\cdot C=C\cdot A=E. \\ \end{align}\]

Из леммы 1 мы заключаем, что все четыре матрицы — $A$, $B$, $C$ и $E$ — являются квадратными одинакового порядка: $\left[ n\times n \right]$. Следовательно, определено произведение:

Поскольку умножение матриц ассоциативно (но не коммутативно!), мы можем записать:

\[\begin{align} & B\cdot A\cdot C=\left(B\cdot A \right)\cdot C=E\cdot C=C; \\ & B\cdot A\cdot C=B\cdot \left(A\cdot C \right)=B\cdot E=B; \\ & B\cdot A\cdot C=C=B\Rightarrow B=C. \\ \end{align}\]

Получили единственно возможный вариант: два экземпляра обратной матрицы равны. Лемма доказана.

Приведённые рассуждения почти дословно повторяют доказательство единственность обратного элемента для всех действительных чисел $b\ne 0$. Единственное существенное дополнение — учёт размерности матриц.

Впрочем, мы до сих пор ничего не знаем о том, всякая ли квадратная матрица является обратимой. Тут нам на помощь приходит определитель — это ключевая характеристика для всех квадратных матриц.

Лемма 3 . Дана матрица $A$. Если обратная к ней матрица ${{A}^{-1}}$ существует, то определитель исходной матрицы отличен от нуля:

\[\left| A \right|\ne 0\]

Доказательство. Мы уже знаем, что $A$ и ${{A}^{-1}}$ — квадратные матрицы размера $\left[ n\times n \right]$. Следовательно, для каждой из них можно вычислить определитель: $\left| A \right|$ и $\left| {{A}^{-1}} \right|$. Однако определитель произведения равен произведению определителей:

\[\left| A\cdot B \right|=\left| A \right|\cdot \left| B \right|\Rightarrow \left| A\cdot {{A}^{-1}} \right|=\left| A \right|\cdot \left| {{A}^{-1}} \right|\]

Но согласно определению $A\cdot {{A}^{-1}}=E$, а определитель $E$ всегда равен 1, поэтому

\[\begin{align} & A\cdot {{A}^{-1}}=E; \\ & \left| A\cdot {{A}^{-1}} \right|=\left| E \right|; \\ & \left| A \right|\cdot \left| {{A}^{-1}} \right|=1. \\ \end{align}\]

Произведение двух чисел равно единице только в том случае, когда каждое из этих чисел отлично от нуля:

\[\left| A \right|\ne 0;\quad \left| {{A}^{-1}} \right|\ne 0.\]

Вот и получается, что $\left| A \right|\ne 0$. Лемма доказана.

На самом деле это требование вполне логично. Сейчас мы разберём алгоритм нахождения обратной матрицы — и станет совершенно ясно, почему при нулевом определителе никакой обратной матрицы в принципе не может существовать.

Но для начала сформулируем «вспомогательное» определение:

Определение. Вырожденная матрица — это квадратная матрица размера $\left[ n\times n \right]$, чей определитель равен нулю.

Таким образом, мы можем утверждать, что всякая обратимая матрица является невырожденной.

Как найти обратную матрицу

Сейчас мы рассмотрим универсальный алгоритм нахождения обратных матриц. Вообще, существует два общепринятых алгоритма, и второй мы тоже сегодня рассмотрим.

Тот, который будет рассмотрен сейчас, очень эффективен для матриц размера $\left[ 2\times 2 \right]$ и — частично — размера $\left[ 3\times 3 \right]$. А вот начиная с размера $\left[ 4\times 4 \right]$ его лучше не применять. Почему — сейчас сами всё поймёте.

Алгебраические дополнения

Готовьтесь. Сейчас будет боль. Нет, не переживайте: к вам не идёт красивая медсестра в юбке, чулках с кружевами и не сделает укол в ягодицу. Всё куда прозаичнее: к вам идут алгебраические дополнения и Её Величество «Союзная Матрица».

Начнём с главного. Пусть имеется квадратная матрица размера $A=\left[ n\times n \right]$, элементы которой именуются ${{a}_{ij}}$. Тогда для каждого такого элемента можно определить алгебраическое дополнение:

Определение. Алгебраическое дополнение ${{A}_{ij}}$ к элементу ${{a}_{ij}}$, стоящего в $i$-й строке и $j$-м столбце матрицы $A=\left[ n\times n \right]$ — это конструкция вида

\[{{A}_{ij}}={{\left(-1 \right)}^{i+j}}\cdot M_{ij}^{*}\]

Где $M_{ij}^{*}$ — определитель матрицы, полученной из исходной $A$ вычёркиванием той самой $i$-й строки и $j$-го столбца.

Ещё раз. Алгебраическое дополнение к элементу матрицы с координатами $\left(i;j \right)$ обозначается как ${{A}_{ij}}$ и считается по схеме:

  1. Сначала вычёркиваем из исходной матрицы $i$-строчку и $j$-й столбец. Получим новую квадратную матрицу, и её определитель мы обозначаем как $M_{ij}^{*}$.
  2. Затем умножаем этот определитель на ${{\left(-1 \right)}^{i+j}}$ — поначалу это выражение может показаться мозговыносящим, но по сути мы просто выясняем знак перед $M_{ij}^{*}$.
  3. Считаем — получаем конкретное число. Т.е. алгебраическое дополнение — это именно число, а не какая-то новая матрица и т.д.

Саму матрицу $M_{ij}^{*}$ называют дополнительным минором к элементу ${{a}_{ij}}$. И в этом смысле приведённое выше определение алгебраического дополнения является частным случаем более сложного определения — того, что мы рассматривали в уроке про определитель.

Важное замечание. Вообще-то во «взрослой» математике алгебраические дополнения определяются так:

  1. Берём в квадратной матрице $k$ строчек и $k$ столбцов. На их пересечении получится матрица размера $\left[ k\times k \right]$ — её определитель называется минором порядка $k$ и обозначается ${{M}_{k}}$.
  2. Затем вычёркиваем эти «избранные» $k$ строчек и $k$ столбцов. Снова получится квадратная матрица — её определитель называется дополнительным минором и обозначается $M_{k}^{*}$.
  3. Умножаем $M_{k}^{*}$ на ${{\left(-1 \right)}^{t}}$, где $t$ — это (вот сейчас внимание!) сумма номеров всех выбранных строчек и столбцов. Это и будет алгебраическое дополнение.

Взгляните на третий шаг: там вообще-то сумма $2k$ слагаемых! Другое дело, что для $k=1$ мы получим лишь 2 слагаемых — это и будут те самые $i+j$ — «координаты» элемента ${{a}_{ij}}$, для которого мы ищем алгебраическое дополнение.

Таким образом сегодня мы используем слегка упрощённое определение. Но как мы увидим в дальнейшем, его окажется более чем достаточно. Куда важнее следующая штука:

Определение. Союзная матрица $S$ к квадратной матрице $A=\left[ n\times n \right]$ — это новая матрица размера $\left[ n\times n \right]$, которая получается из $A$ заменой ${{a}_{ij}}$ алгебраическими дополнениями ${{A}_{ij}}$:

\\Rightarrow S=\left[ \begin{matrix} {{A}_{11}} & {{A}_{12}} & ... & {{A}_{1n}} \\ {{A}_{21}} & {{A}_{22}} & ... & {{A}_{2n}} \\ ... & ... & ... & ... \\ {{A}_{n1}} & {{A}_{n2}} & ... & {{A}_{nn}} \\\end{matrix} \right]\]

Первая мысль, возникающая в момент осознания этого определения — «это сколько же придётся всего считать!» Расслабьтесь: считать придётся, но не так уж и много.:)

Что ж, всё это очень мило, но зачем это нужно? А вот зачем.

Основная теорема

Вернёмся немного назад. Помните, в Лемме 3 утверждалось, что обратимая матрица $A$ всегда не вырождена (т.е. её определитель отличен от нуля: $\left| A \right|\ne 0$).

Так вот, верно и обратное: если матрица $A$ не вырождена, то она всегда обратима. И даже существует схема поиска ${{A}^{-1}}$. Зацените:

Теорема об обратной матрице. Пусть дана квадратная матрица $A=\left[ n\times n \right]$, причём её определитель отличен от нуля: $\left| A \right|\ne 0$. Тогда обратная матрица ${{A}^{-1}}$ существует и считается по формуле:

\[{{A}^{-1}}=\frac{1}{\left| A \right|}\cdot {{S}^{T}}\]

А теперь — всё то же самое, но разборчивым почерком. Чтобы найти обратную матрицу, нужно:

  1. Посчитать определитель $\left| A \right|$ и убедиться, что он отличен от нуля.
  2. Составить союзную матрицу $S$, т.е. посчитать 100500 алгебраических дополнений ${{A}_{ij}}$ и расставить их на месте ${{a}_{ij}}$.
  3. Транспонировать эту матрицу $S$, а затем умножить её на некое число $q={1}/{\left| A \right|}\;$.

И всё! Обратная матрица ${{A}^{-1}}$ найдена. Давайте посмотрим на примеры:

\[\left[ \begin{matrix} 3 & 1 \\ 5 & 2 \\\end{matrix} \right]\]

Решение. Проверим обратимость. Посчитаем определитель:

\[\left| A \right|=\left| \begin{matrix} 3 & 1 \\ 5 & 2 \\\end{matrix} \right|=3\cdot 2-1\cdot 5=6-5=1\]

Определитель отличен от нуля. Значит, матрица обратима. Составим союзную матрицу:

Посчитаем алгебраические дополнения:

\[\begin{align} & {{A}_{11}}={{\left(-1 \right)}^{1+1}}\cdot \left| 2 \right|=2; \\ & {{A}_{12}}={{\left(-1 \right)}^{1+2}}\cdot \left| 5 \right|=-5; \\ & {{A}_{21}}={{\left(-1 \right)}^{2+1}}\cdot \left| 1 \right|=-1; \\ & {{A}_{22}}={{\left(-1 \right)}^{2+2}}\cdot \left| 3 \right|=3. \\ \end{align}\]

Обратите внимание: определители |2|, |5|, |1| и |3| — это именно определители матриц размера $\left[ 1\times 1 \right]$, а не модули. Т.е. если в определителях стояли отрицательные числа, убирать «минус» не надо.

Итого наша союзная матрица выглядит так:

\[{{A}^{-1}}=\frac{1}{\left| A \right|}\cdot {{S}^{T}}=\frac{1}{1}\cdot {{\left[ \begin{array}{*{35}{r}} 2 & -5 \\ -1 & 3 \\\end{array} \right]}^{T}}=\left[ \begin{array}{*{35}{r}} 2 & -1 \\ -5 & 3 \\\end{array} \right]\]

Ну вот и всё. Задача решена.

Ответ. $\left[ \begin{array}{*{35}{r}} 2 & -1 \\ -5 & 3 \\\end{array} \right]$

Задача. Найдите обратную матрицу:

\[\left[ \begin{array}{*{35}{r}} 1 & -1 & 2 \\ 0 & 2 & -1 \\ 1 & 0 & 1 \\\end{array} \right]\]

Решение. Опять считаем определитель:

\[\begin{align} & \left| \begin{array}{*{35}{r}} 1 & -1 & 2 \\ 0 & 2 & -1 \\ 1 & 0 & 1 \\\end{array} \right|=\begin{matrix} \left(1\cdot 2\cdot 1+\left(-1 \right)\cdot \left(-1 \right)\cdot 1+2\cdot 0\cdot 0 \right)- \\ -\left(2\cdot 2\cdot 1+\left(-1 \right)\cdot 0\cdot 1+1\cdot \left(-1 \right)\cdot 0 \right) \\\end{matrix}= \\ & =\left(2+1+0 \right)-\left(4+0+0 \right)=-1\ne 0. \\ \end{align}\]

Определитель отличен от нуля — матрица обратима. А вот сейчас будет самая жесть: надо посчитать аж 9 (девять, мать их!) алгебраических дополнений. И каждое из них будет содержать определитель $\left[ 2\times 2 \right]$. Полетели:

\[\begin{matrix} {{A}_{11}}={{\left(-1 \right)}^{1+1}}\cdot \left| \begin{matrix} 2 & -1 \\ 0 & 1 \\\end{matrix} \right|=2; \\ {{A}_{12}}={{\left(-1 \right)}^{1+2}}\cdot \left| \begin{matrix} 0 & -1 \\ 1 & 1 \\\end{matrix} \right|=-1; \\ {{A}_{13}}={{\left(-1 \right)}^{1+3}}\cdot \left| \begin{matrix} 0 & 2 \\ 1 & 0 \\\end{matrix} \right|=-2; \\ ... \\ {{A}_{33}}={{\left(-1 \right)}^{3+3}}\cdot \left| \begin{matrix} 1 & -1 \\ 0 & 2 \\\end{matrix} \right|=2; \\ \end{matrix}\]

Короче, союзная матрица будет выглядеть так:

Следовательно, обратная матрица будет такой:

\[{{A}^{-1}}=\frac{1}{-1}\cdot \left[ \begin{matrix} 2 & -1 & -2 \\ 1 & -1 & -1 \\ -3 & 1 & 2 \\\end{matrix} \right]=\left[ \begin{array}{*{35}{r}}-2 & -1 & 3 \\ 1 & 1 & -1 \\ 2 & 1 & -2 \\\end{array} \right]\]

Ну и всё. Вот и ответ.

Ответ. $\left[ \begin{array}{*{35}{r}} -2 & -1 & 3 \\ 1 & 1 & -1 \\ 2 & 1 & -2 \\\end{array} \right]$

Как видите, в конце каждого примера мы выполняли проверку. В связи с этим важное замечание:

Не ленитесь выполнять проверку. Умножьте исходную матрицу на найденную обратную — должна получиться $E$.

Выполнить эту проверку намного проще и быстрее, чем искать ошибку в дальнейших вычислениях, когда, например, вы решаете матричное уравнение.

Альтернативный способ

Как я и говорил, теорема об обратной матрице прекрасно работает для размеров $\left[ 2\times 2 \right]$ и $\left[ 3\times 3 \right]$ (в последнем случае — уже не так уж и «прекрасно»), а вот для матриц больших размеров начинается прям печаль.

Но не переживайте: есть альтернативный алгоритм, с помощью которого можно невозмутимо найти обратную хоть для матрицы $\left[ 10\times 10 \right]$. Но, как это часто бывает, для рассмотрения этого алгоритма нам потребуется небольшая теоретическая вводная.

Элементарные преобразования

Среди всевозможных преобразований матрицы есть несколько особых — их называют элементарными. Таких преобразований ровно три:

  1. Умножение. Можно взять $i$-ю строку (столбец) и умножить её на любое число $k\ne 0$;
  2. Сложение. Прибавить к $i$-й строке (столбцу) любую другую $j$-ю строку (столбец), умноженную на любое число $k\ne 0$ (можно, конечно, и $k=0$, но какой в этом смысл? Ничего не изменится же).
  3. Перестановка. Взять $i$-ю и $j$-ю строки (столбцы) и поменять местами.

Почему эти преобразования называются элементарными (для больших матриц они выглядят не такими уж элементарными) и почему их только три — эти вопросы выходят за рамки сегодняшнего урока. Поэтому не будем вдаваться в подробности.

Важно другое: все эти извращения нам предстоит выполнять над присоединённой матрицей. Да, да: вы не ослышались. Сейчас будет ещё одно определение — последнее в сегодняшнем уроке.

Присоединённая матрица

Наверняка в школе вы решали системы уравнений методом сложения. Ну, там, вычесть из одной строки другую, умножить какую-то строку на число — вот это вот всё.

Так вот: сейчас будет всё то же, но уже «по-взрослому». Готовы?

Определение. Пусть дана матрица $A=\left[ n\times n \right]$ и единичная матрица $E$ такого же размера $n$. Тогда присоединённая матрица $\left[ A\left| E \right. \right]$ — это новая матрица размера $\left[ n\times 2n \right]$, которая выглядит так:

\[\left[ A\left| E \right. \right]=\left[ \begin{array}{rrrr|rrrr}{{a}_{11}} & {{a}_{12}} & ... & {{a}_{1n}} & 1 & 0 & ... & 0 \\{{a}_{21}} & {{a}_{22}} & ... & {{a}_{2n}} & 0 & 1 & ... & 0 \\... & ... & ... & ... & ... & ... & ... & ... \\{{a}_{n1}} & {{a}_{n2}} & ... & {{a}_{nn}} & 0 & 0 & ... & 1 \\\end{array} \right]\]

Короче говоря, берём матрицу $A$, справа приписываем к ней единичную матрицу $E$ нужного размера, разделяем их вертикальной чертой для красоты — вот вам и присоединённая.:)

В чём прикол? А вот в чём:

Теорема. Пусть матрица $A$ обратима. Рассмотрим присоединённую матрицу $\left[ A\left| E \right. \right]$. Если с помощью элементарных преобразований строк привести её к виду $\left[ E\left| B \right. \right]$, т.е. путём умножения, вычитания и перестановки строк получить из $A$ матрицу $E$ справа, то полученная слева матрица $B$ — это обратная к $A$:

\[\left[ A\left| E \right. \right]\to \left[ E\left| B \right. \right]\Rightarrow B={{A}^{-1}}\]

Вот так всё просто! Короче говоря, алгоритм нахождения обратной матрицы выглядит так:

  1. Записать присоединённую матрицу $\left[ A\left| E \right. \right]$;
  2. Выполнять элементарные преобразования строк до тех пор, пока права вместо $A$ не появится $E$;
  3. Разумеется, слева тоже что-то появится — некая матрица $B$. Это и будет обратная;
  4. PROFIT!:)

Конечно, сказать намного проще, чем сделать. Поэтому давайте рассмотрим парочку примеров: для размеров $\left[ 3\times 3 \right]$ и $\left[ 4\times 4 \right]$.

Задача. Найдите обратную матрицу:

\[\left[ \begin{array}{*{35}{r}} 1 & 5 & 1 \\ 3 & 2 & 1 \\ 6 & -2 & 1 \\\end{array} \right]\]

Решение. Составляем присоединённую матрицу:

\[\left[ \begin{array}{rrr|rrr} 1 & 5 & 1 & 1 & 0 & 0 \\ 3 & 2 & 1 & 0 & 1 & 0 \\ 6 & -2 & 1 & 0 & 0 & 1 \\\end{array} \right]\]

Поскольку последний столбец исходной матрицы заполнен единицами, вычтем первую строку из остальных:

\[\begin{align} & \left[ \begin{array}{rrr|rrr} 1 & 5 & 1 & 1 & 0 & 0 \\ 3 & 2 & 1 & 0 & 1 & 0 \\ 6 & -2 & 1 & 0 & 0 & 1 \\\end{array} \right]\begin{matrix} \downarrow \\ -1 \\ -1 \\\end{matrix}\to \\ & \to \left[ \begin{array}{rrr|rrr} 1 & 5 & 1 & 1 & 0 & 0 \\ 2 & -3 & 0 & -1 & 1 & 0 \\ 5 & -7 & 0 & -1 & 0 & 1 \\\end{array} \right] \\ \end{align}\]

Больше единиц нет, кроме первой строки. Но её мы не трогаем, иначе в третьем столбце начнут «размножаться» только что убранные единицы.

Зато можем вычесть вторую строку дважды из последней — получим единицу в левом нижнем углу:

\[\begin{align} & \left[ \begin{array}{rrr|rrr} 1 & 5 & 1 & 1 & 0 & 0 \\ 2 & -3 & 0 & -1 & 1 & 0 \\ 5 & -7 & 0 & -1 & 0 & 1 \\\end{array} \right]\begin{matrix} \ \\ \downarrow \\ -2 \\\end{matrix}\to \\ & \left[ \begin{array}{rrr|rrr} 1 & 5 & 1 & 1 & 0 & 0 \\ 2 & -3 & 0 & -1 & 1 & 0 \\ 1 & -1 & 0 & 1 & -2 & 1 \\\end{array} \right] \\ \end{align}\]

Теперь можно вычесть последнюю строку из первой и дважды из второй — таким образом мы «занулим» первый столбец:

\[\begin{align} & \left[ \begin{array}{rrr|rrr} 1 & 5 & 1 & 1 & 0 & 0 \\ 2 & -3 & 0 & -1 & 1 & 0 \\ 1 & -1 & 0 & 1 & -2 & 1 \\\end{array} \right]\begin{matrix} -1 \\ -2 \\ \uparrow \\\end{matrix}\to \\ & \to \left[ \begin{array}{rrr|rrr} 0 & 6 & 1 & 0 & 2 & -1 \\ 0 & -1 & 0 & -3 & 5 & -2 \\ 1 & -1 & 0 & 1 & -2 & 1 \\\end{array} \right] \\ \end{align}\]

Умножим вторую строку на −1, а затем вычтем её 6 раз из первой и прибавим 1 раз к последней:

\[\begin{align} & \left[ \begin{array}{rrr|rrr} 0 & 6 & 1 & 0 & 2 & -1 \\ 0 & -1 & 0 & -3 & 5 & -2 \\ 1 & -1 & 0 & 1 & -2 & 1 \\\end{array} \right]\begin{matrix} \ \\ \left| \cdot \left(-1 \right) \right. \\ \ \\\end{matrix}\to \\ & \to \left[ \begin{array}{rrr|rrr} 0 & 6 & 1 & 0 & 2 & -1 \\ 0 & 1 & 0 & 3 & -5 & 2 \\ 1 & -1 & 0 & 1 & -2 & 1 \\\end{array} \right]\begin{matrix} -6 \\ \updownarrow \\ +1 \\\end{matrix}\to \\ & \to \left[ \begin{array}{rrr|rrr} 0 & 0 & 1 & -18 & 32 & -13 \\ 0 & 1 & 0 & 3 & -5 & 2 \\ 1 & 0 & 0 & 4 & -7 & 3 \\\end{array} \right] \\ \end{align}\]

Осталось лишь поменять местами строки 1 и 3:

\[\left[ \begin{array}{rrr|rrr} 1 & 0 & 0 & 4 & -7 & 3 \\ 0 & 1 & 0 & 3 & -5 & 2 \\ 0 & 0 & 1 & -18 & 32 & -13 \\\end{array} \right]\]

Готово! Справа — искомая обратная матрица.

Ответ. $\left[ \begin{array}{*{35}{r}}4 & -7 & 3 \\ 3 & -5 & 2 \\ -18 & 32 & -13 \\\end{array} \right]$

Задача. Найдите обратную матрицу:

\[\left[ \begin{matrix} 1 & 4 & 2 & 3 \\ 1 & -2 & 1 & -2 \\ 1 & -1 & 1 & 1 \\ 0 & -10 & -2 & -5 \\\end{matrix} \right]\]

Решение. Снова составляем присоединённую:

\[\left[ \begin{array}{rrrr|rrrr} 1 & 4 & 2 & 3 & 1 & 0 & 0 & 0 \\ 1 & -2 & 1 & -2 & 0 & 1 & 0 & 0 \\ 1 & -1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & -10 & -2 & -5 & 0 & 0 & 0 & 1 \\\end{array} \right]\]

Немного позалимаем, попечалимся от того, сколько сейчас придётся считать... и начнём считать. Для начала «обнулим» первый столбец, вычитая строку 1 из строк 2 и 3:

\[\begin{align} & \left[ \begin{array}{rrrr|rrrr} 1 & 4 & 2 & 3 & 1 & 0 & 0 & 0 \\ 1 & -2 & 1 & -2 & 0 & 1 & 0 & 0 \\ 1 & -1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & -10 & -2 & -5 & 0 & 0 & 0 & 1 \\\end{array} \right]\begin{matrix} \downarrow \\ -1 \\ -1 \\ \ \\\end{matrix}\to \\ & \to \left[ \begin{array}{rrrr|rrrr} 1 & 4 & 2 & 3 & 1 & 0 & 0 & 0 \\ 0 & -6 & -1 & -5 & -1 & 1 & 0 & 0 \\ 0 & -5 & -1 & -2 & -1 & 0 & 1 & 0 \\ 0 & -10 & -2 & -5 & 0 & 0 & 0 & 1 \\\end{array} \right] \\ \end{align}\]

Наблюдаем слишком много «минусов» в строках 2—4. Умножим все три строки на −1, а затем «выжжем» третий столбец, вычитая строку 3 из остальных:

\[\begin{align} & \left[ \begin{array}{rrrr|rrrr} 1 & 4 & 2 & 3 & 1 & 0 & 0 & 0 \\ 0 & -6 & -1 & -5 & -1 & 1 & 0 & 0 \\ 0 & -5 & -1 & -2 & -1 & 0 & 1 & 0 \\ 0 & -10 & -2 & -5 & 0 & 0 & 0 & 1 \\\end{array} \right]\begin{matrix} \ \\ \left| \cdot \left(-1 \right) \right. \\ \left| \cdot \left(-1 \right) \right. \\ \left| \cdot \left(-1 \right) \right. \\\end{matrix}\to \\ & \to \left[ \begin{array}{rrrr|rrrr} 1 & 4 & 2 & 3 & 1 & 0 & 0 & 0 \\ 0 & 6 & 1 & 5 & 1 & -1 & 0 & 0 \\ 0 & 5 & 1 & 2 & 1 & 0 & -1 & 0 \\ 0 & 10 & 2 & 5 & 0 & 0 & 0 & -1 \\\end{array} \right]\begin{matrix} -2 \\ -1 \\ \updownarrow \\ -2 \\\end{matrix}\to \\ & \to \left[ \begin{array}{rrrr|rrrr} 1 & -6 & 0 & -1 & -1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 3 & 0 & -1 & 1 & 0 \\ 0 & 5 & 1 & 2 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & -2 & 0 & 2 & -1 \\\end{array} \right] \\ \end{align}\]

Теперь самое время «поджарить» последний столбец исходной матрицы: вычитаем строку 4 из остальных:

\[\begin{align} & \left[ \begin{array}{rrrr|rrrr} 1 & -6 & 0 & -1 & -1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 3 & 0 & -1 & 1 & 0 \\ 0 & 5 & 1 & 2 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & -2 & 0 & 2 & -1 \\\end{array} \right]\begin{matrix} +1 \\ -3 \\ -2 \\ \uparrow \\\end{matrix}\to \\ & \to \left[ \begin{array}{rrrr|rrrr} 1 & -6 & 0 & 0 & -3 & 0 & 4 & -1 \\ 0 & 1 & 0 & 0 & 6 & -1 & -5 & 3 \\ 0 & 5 & 1 & 0 & 5 & 0 & -5 & 2 \\ 0 & 0 & 0 & 1 & -2 & 0 & 2 & -1 \\\end{array} \right] \\ \end{align}\]

Финальный бросок: «выжигаем» второй столбец, вычитая строку 2 из строки 1 и 3:

\[\begin{align} & \left[ \begin{array}{rrrr|rrrr} 1 & -6 & 0 & 0 & -3 & 0 & 4 & -1 \\ 0 & 1 & 0 & 0 & 6 & -1 & -5 & 3 \\ 0 & 5 & 1 & 0 & 5 & 0 & -5 & 2 \\ 0 & 0 & 0 & 1 & -2 & 0 & 2 & -1 \\\end{array} \right]\begin{matrix} 6 \\ \updownarrow \\ -5 \\ \ \\\end{matrix}\to \\ & \to \left[ \begin{array}{rrrr|rrrr} 1 & 0 & 0 & 0 & 33 & -6 & -26 & -17 \\ 0 & 1 & 0 & 0 & 6 & -1 & -5 & 3 \\ 0 & 0 & 1 & 0 & -25 & 5 & 20 & -13 \\ 0 & 0 & 0 & 1 & -2 & 0 & 2 & -1 \\\end{array} \right] \\ \end{align}\]

И снова слева единичная матрица, значит справа — обратная.:)

Ответ. $\left[ \begin{matrix} 33 & -6 & -26 & 17 \\ 6 & -1 & -5 & 3 \\ -25 & 5 & 20 & -13 \\ -2 & 0 & 2 & -1 \\\end{matrix} \right]$

Нахождение обратной матрицы.

В этой статье разберемся с понятием обратной матрицы, ее свойствами и способами нахождения. Подробно остановимся на решении примеров, в которых требуется построить обратную матрицу для заданной.

Навигация по странице.

    Обратная матрица - определение.

    Нахождение обратной матрицы с помощью матрицы из алгебраических дополнений.

    Свойства обратной матрицы.

    Нахождение обратной матрицы методом Гаусса-Жордана.

    Нахождение элементов обратной матрицы с помощью решения соответствующих систем линейных алгебраических уравнений.

Обратная матрица - определение.

Понятие обратной матрицы вводится лишь для квадратных матриц, определитель которых отличен от нуля, то есть для невырожденных квадратных матриц.

Определение.

Матрица называется обратной для матрицы , определитель которой отличен от нуля , если справедливы равенства , где E – единичная матрица порядка n на n .

Нахождение обратной матрицы с помощью матрицы из алгебраических дополнений.

Как же находить обратную матрицу для данной?

Во-первых, нам потребуются понятия транспонированной матрицы , минора матрицы и алгебраического дополнения элемента матрицы.

Определение.

Минор k-ого порядка матрицы A порядка m на n – это определитель матрицы порядка k на k , которая получается из элементов матрицы А , находящихся в выбранныхk строках и k столбцах. (k не превосходит наименьшего из чисел m или n ).

Минор (n-1)-ого порядка, который составляется из элементов всех строк, кроме i-ой , и всех столбцов, кроме j-ого , квадратной матрицы А порядка n на n обозначим как .

Иными словами, минор получается из квадратной матрицы А порядка n на n вычеркиванием элементов i-ой строки и j-ого столбца.

Для примера запишем, минор 2-ого порядка, который получаетсся из матрицы выбором элементов ее второй, третьей строк и первого, третьего столбцов . Также покажем минор, который получается из матрицы вычеркиванием второй строки и третьего столбца . Проиллюстрируем построение этих миноров: и .

Определение.

Алгебраическим дополнением элемента квадратной матрицы называют минор (n-1)-ого порядка, который получается из матрицы А , вычеркиванием элементов ее i-ой строки и j-ого столбца, умноженный на .

Алгебраическое дополнение элемента обозначается как . Таким обрзом, .

Например, для матрицы алгебраическое дополнение элемента есть .

Во-вторых, нам пригодятся два свойства определителя, которые мы разобрали в разделевычисление определителя матрицы :

На основании этих свойств определителя, определения операции умножения матрицы на число и понятия обратной матрицы справедливо равенство , где - транспонированная матрица, элементами которой являются алгебраические дополнения .

Матрица действительно является обратной для матрицы А , так как выполняются равенства . Покажем это

Составим алгоритм нахождения обратной матрицы с использованием равенства .

Разберем алгоритм нахождения обратной матрицы на примере.

Пример.

Дана матрица . Найдите обратную матрицу.

Решение.

Вычислим определитель матрицы А , разложив его по элементам третьего столбца:

Определитель отличен от нуля, так что матрица А обратима.

Найдем матрицу из алгебраических дополнений:

Поэтому

Выполним транспонирование матрицы из алгебраических дополнений:

Теперь находим обратную матрицу как :

Проверяем полученный результат:

Равенства выполняются, следовательно, обратная матрица найдена верно.

Свойства обратной матрицы.

Понятие обратной матрицы, равенство , определения операций над матрицами и свойства определителя матрицы позволяют обосновать следующие свойства обратной матрицы :

Нахождение элементов обратной матрицы с помощью решения соответствующих систем линейных алгебраических уравнений.

Рассмотрим еще один способ нахождения обратной матрицы для квадратной матрицы А порядка n на n .

Этот метод основан на решении n систем линейных неоднородных алгебраических уравнений с n неизвестными. Неизвестными переменными в этих системах уравнений являются элементы обратной матрицы.

Идея очень проста. Обозначим обратную матрицу как X , то есть, . Так как по определению обратной матрицы , то

Приравнивая соответствующие элементы по столбцам, получим n систем линейных уравнений

Решаем их любым способом и из найденных значений составляем обратную матрицу.

Разберем этот метод на примере.

Пример.

Дана матрица . Найдите обратную матрицу.

Решение.

Примем . Равенство дает нам три системы линейных неоднородных алгебраических уравнений:

Не будем расписывать решение этих систем, при необходимости обращайтесь к разделурешение систем линейных алгебраических уравнений .

Из первой системы уравнений имеем , из второй - , из третьей - . Следовательно, искомая обратная матрица имеет вид . Рекомендуем сделать проверку, чтобы убедиться в правильности результата.

Подведем итог.

Мы рассмотрели понятие обратной матрицы, ее свойства и три метода ее нахождения.

Пример решений методом обратной матрицы

Задание 1. Решить СЛАУ методом обратной матрицы. 2 x 1 + 3x 2 + 3x 3 + x 4 = 1 3 x 1 + 5x 2 + 3x 3 + 2x 4 = 2 5 x 1 + 7x 2 + 6x 3 + 2x 4 = 3 4 x 1 + 4x 2 + 3x 3 + x 4 = 4

Начало формы

Конец формы

Решение . Запишем матрицу в виде: Вектор B: B T = (1,2,3,4) Главный определитель Минор для (1,1): = 5 (6 1-3 2)-7 (3 1-3 2)+4 (3 2-6 2) = -3 Минор для (2,1): = 3 (6 1-3 2)-7 (3 1-3 1)+4 (3 2-6 1) = 0 Минор для (3,1): = 3 (3 1-3 2)-5 (3 1-3 1)+4 (3 2-3 1) = 3 Минор для (4,1): = 3 (3 2-6 2)-5 (3 2-6 1)+7 (3 2-3 1) = 3 Определитель минора ∆ = 2 (-3)-3 0+5 3-4 3 = -3

Транспонированная матрица Алгебраические дополнения ∆ 1,1 = 5 (6 1-2 3)-3 (7 1-2 4)+2 (7 3-6 4) = -3 ∆ 1,2 = -3 (6 1-2 3)-3 (7 1-2 4)+1 (7 3-6 4) = 0 ∆ 1,3 = 3 (3 1-2 3)-3 (5 1-2 4)+1 (5 3-3 4) = 3 ∆ 1,4 = -3 (3 2-2 6)-3 (5 2-2 7)+1 (5 6-3 7) = -3 ∆ 2,1 = -3 (6 1-2 3)-3 (5 1-2 4)+2 (5 3-6 4) = 9 ∆ 2,2 = 2 (6 1-2 3)-3 (5 1-2 4)+1 (5 3-6 4) = 0 ∆ 2,3 = -2 (3 1-2 3)-3 (3 1-2 4)+1 (3 3-3 4) = -6 ∆ 2,4 = 2 (3 2-2 6)-3 (3 2-2 5)+1 (3 6-3 5) = 3 ∆ 3,1 = 3 (7 1-2 4)-5 (5 1-2 4)+2 (5 4-7 4) = -4 ∆ 3,2 = -2 (7 1-2 4)-3 (5 1-2 4)+1 (5 4-7 4) = 1 ∆ 3,3 = 2 (5 1-2 4)-3 (3 1-2 4)+1 (3 4-5 4) = 1 ∆ 3,4 = -2 (5 2-2 7)-3 (3 2-2 5)+1 (3 7-5 5) = 0 ∆ 4,1 = -3 (7 3-6 4)-5 (5 3-6 4)+3 (5 4-7 4) = -12 ∆ 4,2 = 2 (7 3-6 4)-3 (5 3-6 4)+3 (5 4-7 4) = -3 ∆ 4,3 = -2 (5 3-3 4)-3 (3 3-3 4)+3 (3 4-5 4) = 9 ∆ 4,4 = 2 (5 6-3 7)-3 (3 6-3 5)+3 (3 7-5 5) = -3 Обратная матрица Вектор результатов X X = A -1 ∙ B X T = (2,-1,-0.33,1) x 1 = 2 x 2 = -1 x 3 = -0.33 x 4 = 1

см. также решений СЛАУ методом обратной матрицы online. Для этого введите свои данные и получите решение с подробными комментариями.

Задание 2 . Систему уравнений записать в матричной форме и решить ее с помощью обратной матрицы. Сделать проверку полученного решения. Решение :xml :xls

Пример 2 . Записать систему уравнений в матричной форме и решить с помощью обратной матрицы. Решение :xml :xls

Пример . Дана система трех линейных уравнений с тремя неизвестными. Требуется: 1) найти ее решение с помощью формул Крамера ; 2) записать систему в матричной форме и решить ее средствами матричного исчисления. Методические рекомендации . После решения методом Крамера, найдите кнопку "Решение методом обратной матрицы для исходных данных". Вы получите соответствующее решение. Таким образом, данные вновь заполнять не придется. Решение . Обозначим через А - матрицу коэффициентов при неизвестных; X - матрицу-столбец неизвестных; B - матрицу-столбец свободных членов:

Вектор B: B T =(4,-3,-3) С учетом этих обозначений данная система уравнений принимает следующую матричную форму: А*Х = B. Если матрица А - невырожденная (ее определитель отличен от нуля, то она имеет обратную матрицу А -1 . Умножив обе части уравнения на А -1 , получим: А -1 *А*Х = А -1 *B, А -1 *А=Е. Это равенство называется матричной записью решения системы линейных уравнений . Для нахождения решения системы уравнений необходимо вычислить обратную матрицу А -1 . Система будет иметь решение, если определитель матрицы A отличен от нуля. Найдем главный определитель. ∆=-1 (-2 (-1)-1 1)-3 (3 (-1)-1 0)+2 (3 1-(-2 0))=14 Итак, определитель 14 ≠ 0, поэтому продолжаем решение. Для этого найдем обратную матрицу через алгебраические дополнения. Пусть имеем невырожденную матрицу А:

Вычисляем алгебраические дополнения.

∆ 1,1 =(-2 (-1)-1 1)=1

∆ 1,2 =-(3 (-1)-0 1)=3

∆ 1,3 =(3 1-0 (-2))=3

∆ 2,1 =-(3 (-1)-1 2)=5

∆ 2,2 =(-1 (-1)-0 2)=1

∆ 2,3 =-(-1 1-0 3)=1

∆ 3,1 =(3 1-(-2 2))=7

∆ 3,2 =-(-1 1-3 2)=7

X T =(-1,1,2) x 1 = -14 / 14 =-1 x 2 = 14 / 14 =1 x 3 = 28 / 14 =2 Проверка . -1 -1+3 1+0 2=4 3 -1+-2 1+1 2=-3 2 -1+1 1+-1 2=-3 doc :xml :xls Ответ: -1,1,2.

Похожие на обратные по многим свойствам.

Энциклопедичный YouTube

    1 / 5

    ✪ Как находить обратную матрицу - bezbotvy

    ✪ Обратная матрица (2 способа нахождения)

    ✪ Обратная матрица #1

    ✪ 2015-01-28. Обратная матрица 3x3

    ✪ 2015-01-27. Обратная матрица 2х2

    Субтитры

Свойства обратной матрицы

  • det A − 1 = 1 det A {\displaystyle \det A^{-1}={\frac {1}{\det A}}} , где det {\displaystyle \ \det } обозначает определитель .
  • (A B) − 1 = B − 1 A − 1 {\displaystyle \ (AB)^{-1}=B^{-1}A^{-1}} для двух квадратных обратимых матриц A {\displaystyle A} и B {\displaystyle B} .
  • (A T) − 1 = (A − 1) T {\displaystyle \ (A^{T})^{-1}=(A^{-1})^{T}} , где (. . .) T {\displaystyle (...)^{T}} обозначает транспонированную матрицу.
  • (k A) − 1 = k − 1 A − 1 {\displaystyle \ (kA)^{-1}=k^{-1}A^{-1}} для любого коэффициента k ≠ 0 {\displaystyle k\not =0} .
  • E − 1 = E {\displaystyle \ E^{-1}=E} .
  • Если необходимо решить систему линейных уравнений , (b - ненулевой вектор) где x {\displaystyle x} - искомый вектор, и если A − 1 {\displaystyle A^{-1}} существует, то x = A − 1 b {\displaystyle x=A^{-1}b} . В противном случае либо размерность пространства решений больше нуля, либо их нет вовсе.

Способы нахождения обратной матрицы

Если матрица обратима, то для нахождения обратной матрицы можно воспользоваться одним из следующих способов:

Точные (прямые) методы

Метод Гаусса-Жордана

Возьмём две матрицы: саму A и единичную E . Приведём матрицу A к единичной матрице методом Гаусса-Жордана применяя преобразования по строкам (можно также применять преобразования и по столбцам, но не в перемешку). После применения каждой операции к первой матрице применим ту же операцию ко второй. Когда приведение первой матрицы к единичному виду будет завершено, вторая матрица окажется равной A −1 .

При использовании метода Гаусса первая матрица будет умножаться слева на одну из элементарных матриц Λ i {\displaystyle \Lambda _{i}} (трансвекцию или диагональную матрицу с единицами на главной диагонали, кроме одной позиции):

Λ 1 ⋅ ⋯ ⋅ Λ n ⋅ A = Λ A = E ⇒ Λ = A − 1 {\displaystyle \Lambda _{1}\cdot \dots \cdot \Lambda _{n}\cdot A=\Lambda A=E\Rightarrow \Lambda =A^{-1}} . Λ m = [ 1 … 0 − a 1 m / a m m 0 … 0 … 0 … 1 − a m − 1 m / a m m 0 … 0 0 … 0 1 / a m m 0 … 0 0 … 0 − a m + 1 m / a m m 1 … 0 … 0 … 0 − a n m / a m m 0 … 1 ] {\displaystyle \Lambda _{m}={\begin{bmatrix}1&\dots &0&-a_{1m}/a_{mm}&0&\dots &0\\&&&\dots &&&\\0&\dots &1&-a_{m-1m}/a_{mm}&0&\dots &0\\0&\dots &0&1/a_{mm}&0&\dots &0\\0&\dots &0&-a_{m+1m}/a_{mm}&1&\dots &0\\&&&\dots &&&\\0&\dots &0&-a_{nm}/a_{mm}&0&\dots &1\end{bmatrix}}} .

Вторая матрица после применения всех операций станет равна Λ {\displaystyle \Lambda } , то есть будет искомой. Сложность алгоритма - O (n 3) {\displaystyle O(n^{3})} .

С помощью матрицы алгебраических дополнений

Матрица, обратная матрице A {\displaystyle A} , представима в виде

A − 1 = adj (A) det (A) {\displaystyle {A}^{-1}={{{\mbox{adj}}(A)} \over {\det(A)}}}

где adj (A) {\displaystyle {\mbox{adj}}(A)} - присоединенная матрица ;

Сложность алгоритма зависит от сложности алгоритма расчета определителя O det и равна O(n²)·O det .

Использование LU/LUP-разложения

Матричное уравнение A X = I n {\displaystyle AX=I_{n}} для обратной матрицы X {\displaystyle X} можно рассматривать как совокупность n {\displaystyle n} систем вида A x = b {\displaystyle Ax=b} . Обозначим i {\displaystyle i} -ый столбец матрицы X {\displaystyle X} через X i {\displaystyle X_{i}} ; тогда A X i = e i {\displaystyle AX_{i}=e_{i}} , i = 1 , … , n {\displaystyle i=1,\ldots ,n} ,поскольку i {\displaystyle i} -м столбцом матрицы I n {\displaystyle I_{n}} является единичный вектор e i {\displaystyle e_{i}} . другими словами, нахождение обратной матрицы сводится к решению n уравнений с одной матрицей и разными правыми частями. После выполнения LUP-разложения (время O(n³)) на решение каждого из n уравнений нужно время O(n²), так что и эта часть работы требует времени O(n³) .

Если матрица A невырождена, то для неё можно рассчитать LUP-разложение P A = L U {\displaystyle PA=LU} . Пусть P A = B {\displaystyle PA=B} , B − 1 = D {\displaystyle B^{-1}=D} . Тогда из свойств обратной матрицы можно записать: D = U − 1 L − 1 {\displaystyle D=U^{-1}L^{-1}} . Если умножить это равенство на U и L то можно получить два равенства вида U D = L − 1 {\displaystyle UD=L^{-1}} и D L = U − 1 {\displaystyle DL=U^{-1}} . Первое из этих равенств представляет собой систему из n² линейных уравнений для n (n + 1) 2 {\displaystyle {\frac {n(n+1)}{2}}} из которых известны правые части (из свойств треугольных матриц). Второе представляет также систему из n² линейных уравнений для n (n − 1) 2 {\displaystyle {\frac {n(n-1)}{2}}} из которых известны правые части (также из свойств треугольных матриц). Вместе они представляют собой систему из n² равенств. С помощью этих равенств можно реккурентно определить все n² элементов матрицы D. Тогда из равенства (PA) −1 = A −1 P −1 = B −1 = D. получаем равенство A − 1 = D P {\displaystyle A^{-1}=DP} .

В случае использования LU-разложения не требуется перестановки столбцов матрицы D но решение может разойтись даже если матрица A невырождена.

Сложность алгоритма - O(n³).

Итерационные методы

Методы Шульца

{ Ψ k = E − A U k , U k + 1 = U k ∑ i = 0 n Ψ k i {\displaystyle {\begin{cases}\Psi _{k}=E-AU_{k},\\U_{k+1}=U_{k}\sum _{i=0}^{n}\Psi _{k}^{i}\end{cases}}}

Оценка погрешности

Выбор начального приближения

Проблема выбора начального приближения в рассматриваемых здесь процессах итерационного обращения матриц не позволяет относиться к ним как к самостоятельным универсальным методам, конкурирующими с прямыми методами обращения, основанными, например, на LU-разложении матриц. Имеются некоторые рекомендации по выбору U 0 {\displaystyle U_{0}} , обеспечивающие выполнение условия ρ (Ψ 0) < 1 {\displaystyle \rho (\Psi _{0})<1} (спектральный радиус матрицы меньше единицы), являющегося необходимым и достаточным для сходимости процесса. Однако при этом, во-первых, требуется знать сверху оценку спектра обращаемой матрицы A либо матрицы A A T {\displaystyle AA^{T}} (а именно, если A - симметричная положительно определённая матрица и ρ (A) ≤ β {\displaystyle \rho (A)\leq \beta } , то можно взять U 0 = α E {\displaystyle U_{0}={\alpha }E} , где ; если же A - произвольная невырожденная матрица и ρ (A A T) ≤ β {\displaystyle \rho (AA^{T})\leq \beta } , то полагают U 0 = α A T {\displaystyle U_{0}={\alpha }A^{T}} , где также α ∈ (0 , 2 β) {\displaystyle \alpha \in \left(0,{\frac {2}{\beta }}\right)} ; можно конечно упростить ситуацию и, воспользовавшись тем, что ρ (A A T) ≤ k A A T k {\displaystyle \rho (AA^{T})\leq {\mathcal {k}}AA^{T}{\mathcal {k}}} , положить U 0 = A T ‖ A A T ‖ {\displaystyle U_{0}={\frac {A^{T}}{\|AA^{T}\|}}} ). Во-вторых, при таком задании начальной матрицы нет гарантии, что ‖ Ψ 0 ‖ {\displaystyle \|\Psi _{0}\|} будет малой (возможно, даже окажется ‖ Ψ 0 ‖ > 1 {\displaystyle \|\Psi _{0}\|>1} ), и высокий порядок скорости сходимости обнаружится далеко не сразу.

Примеры

Матрица 2х2

A − 1 = [ a b c d ] − 1 = 1 det (A) [ d − b − c a ] = 1 a d − b c [ d − b − c a ] . {\displaystyle \mathbf {A} ^{-1}={\begin{bmatrix}a&b\\c&d\\\end{bmatrix}}^{-1}={\frac {1}{\det(\mathbf {A})}}{\begin{bmatrix}\,\,\,d&\!\!-b\\-c&\,a\\\end{bmatrix}}={\frac {1}{ad-bc}}{\begin{bmatrix}\,\,\,d&\!\!-b\\-c&\,a\\\end{bmatrix}}.}

Обращение матрицы 2х2 возможно только при условии, что a d − b c = det A ≠ 0 {\displaystyle ad-bc=\det A\neq 0} .

2024 med103.ru. Я самая красивая. Мода и стиль. Разные хитрости. Уход за лицом.