Белый карлик, нейтронная звезда, черная дыра

Белый карлик - звезда, в нашем космосе довольно распространенная. Ученые называют ее результатом эволюции звезд, финальным этапом развития. Всего есть два сценария видоизменения звездного тела, в одном случае завершающий этап - нейтронная звезда, в другом - черная дыра. Карлики - это окончательный эволюционный шаг. Вокруг них есть планетарные системы. Ученые смогли определить это, изучив обогащенные металлами экземпляры.

История вопроса

Белые карлики - звезды, привлекшие внимание астрономов в 1919. Впервые удалось открыть такое небесное тело ученому из Нидерландов Маанену. Для своего времени специалист сделал довольно нетипичное и неожиданное открытие. Увиденный им карлик был похож на звезду, но имел нестандартные маленькие размеры. Спектр, однако, был таков, словно бы это массивное и большое небесное тело.

Причины такого странного явления привлекали ученых довольно долгое время, поэтому было приложено немало усилий для изучения строения белых карликов. Прорыв совершился, когда высказали и доказали предположение обилия в атмосфере небесного тела разнообразных металлических структур.

Необходимо уточнить, что металлы в астрофизике - это всевозможные элементы, молекулы которых тяжелее водородных, гелиевых, а химический состав их более прогрессивен, нежели эти два соединения. Гелий, водород, как удалось установить ученым, в нашей вселенной распространены шире, нежели любые другие вещества. Отталкиваясь от этого, было решено все прочее обозначать металлами.

Развитие темы

Хотя впервые сильно отличающиеся размерами от Солнца белые карлики были замечены в двадцатых годах, только через половину века люди выявили, что наличие металлических структур в звездной атмосфере не является типичным явлением. Как выяснилось, при включении в атмосферу помимо двух самых распространенных веществ более тяжелых происходит их смещение в глубокие слои. Тяжелые вещества, оказавшись среди молекул гелия, водорода, со временем должны переместиться в ядро звезды.

Причин такого процесса удалось обнаружить несколько. Радиус белого карлика мал, такие звездные тела очень компактные - не зря они получили свое название. В среднем радиус сравним с земным, в то время как вес сходен с весом звезды, освещающей нашу планетарную систему. Такое соотношение габаритов и веса становится причиной исключительно большого гравитационного поверхностного ускорения. Следовательно, оседание тяжелых металлов в водородной и гелиевой атмосфере происходит всего лишь за несколько земных дней после попадания молекулы в общую газовую массу.

Возможности и продолжительность

Иногда характеристики белых карликов таковы, что процесс оседания молекул тяжелых веществ может затянуться надолго. Наиболее благоприятные варианты, с точки зрения наблюдателя с Земли, - это процессы, на которые уходят миллионы, десятки миллионов лет. И все же такие временные промежутки исключительно малы в сравнении с продолжительностью существования самого звездного тела.

Эволюция белого карлика такова, что большая часть наблюдаемых человеком в настоящий момент формирований уже насчитывает несколько сотен миллионов земных лет. Если сравнить это с самым медленным процессом поглощения металлов ядром, разница получается более чем существенная. Следовательно, выявление металла в атмосфере определенной наблюдаемой звезды позволяет с уверенностью заключить, что изначально тело не имело такого состава атмосферы, иначе все металлические включения давно пропали бы.

Теория и практика

Описанные выше наблюдения, а также собранная за долгие десятилетия информация о белых карликах, нейтронных звездах, черных дырах позволила предположить, что атмосфера получает металлические включения из внешних источников. Ученые сперва решили, что таковой является среда между звездами. Небесное тело перемещается сквозь такое вещество, аккрецирует среду на свою поверхность, тем самым обогащая атмосферу тяжелыми элементами. Но дальнейшие наблюдения показали, что такая теория несостоятельна. Как уточнили специалисты, если бы изменение атмосферы происходило именно таким путем, преимущественно карлик извне получал бы водород, так как среда между звездами сформирована в своей основной массе именно водородными и гелиевыми молекулами. Лишь малый процент среды приходится на долю тяжелых соединений.

Если бы сформированная из первичных наблюдений за белыми карликами, нейтронными звездами, черными дырами теория оправдала бы себя, карлики состояли бы из водорода как самого легкого элемента. Это не допускало бы существования даже гелиевых небесных тел, ведь гелий тяжелее, а значит, водородная аккреция полностью скрыла бы его от глаза внешнего наблюдателя. Исходя из наличия гелиевых карликов, ученые пришли к выводу, что межзвездная среда не может служить единственным и даже основным источником металлов в атмосфере звездных тел.

Как объяснить?

Ученые, занимавшиеся в 70-х годах прошлого столетия черными дырами, белыми карликами, предположили, что металлические включения могут объясняться падением комет на поверхность небесного тела. Правда, в свое время такие идеи были признаны слишком экзотичными и поддержки не получили. Во многом это объяснялось тем, что люди еще не знали о наличии иных планетных систем - известна была только наша «домашняя» Солнечная.

Существенный шаг вперед в исследовании черных дыр, белых карликов был сделан в конце следующего, восьмого десятилетия прошлого века. Ученые получили в свое распоряжение особенно мощные инфракрасные приборы для наблюдения за глубинами космоса, что позволило вокруг одного из известных астрономам белого карлика обнаружить инфракрасное излучение. Таковое было выявлено именно вокруг карлика, атмосфера которого содержала металлические включения.

Инфракрасное излучение, позволившее оценить температуру белого карлика, также сообщило ученым, что звездное тело окружено некоторым веществом, способным поглощать звездное излучение. Это вещество нагрето до конкретного температурного уровня, меньшего присущего звезде. Это позволяет постепенно перенаправлять поглощенную энергию. Излучение происходит в инфракрасном диапазоне.

Наука движется вперед

Спектры белого карлика стали объектом изучения передовых умов мира астрономов. Как оказалось, из них можно получить довольно объемную информацию об особенностях небесных тел. Особенно интересными были наблюдения за звездными телами с избыточным инфракрасным излучением. В настоящее время удалось выявить около трех десятков систем такого типа. Основной их процент изучался посредством мощнейшего телескопа «Спитцер».

Ученые, наблюдая за небесными телами, установили, что плотность белых карликов существенно меньше этого параметра, свойственного гигантам. Также было выявлено, что избыточное инфракрасное излучение объясняется наличием дисков, сформированных специфическим веществом, способным поглощать энергетическое излучение. Именно оно затем излучает энергию, но уже в ином диапазоне волн.

Диски расположены исключительно близко и в некоторой степени влияют на массу белых карликов (которая не может превышать предела Чандрасекара). Внешний радиус получил название обломочного диска. Было высказано предположение, что таковой сформировался при разрушении некоторого тела. В среднем радиус по размеру сравним с Солнцем.

Если обратить внимание на нашу планетарную систему, станет ясно, что относительно недалеко от «дома» мы может наблюдать сходный пример - это окружающие Сатурн кольца, размер которых также сравним с радиусом нашего светила. Со временем ученые установили, что эта особенность - не единственная из тех, что роднит карлики и Сатурн. К примеру, и планета, и звезды обладают очень тонкими дисками, которым несвойственна прозрачность при попытке просвечивания светом.

Выводы и развитие теории

Поскольку кольца белых карликов сравнимы с теми, что окружают Сатурн, стало возможным сформулировать новые теории, объясняющие наличие металлов в атмосфере этих звезд. Астрономам известно, что вокруг Сатурна кольца сформированы приливным разрушением некоторых тел, оказавшихся достаточно близко от планеты, чтобы на них повлияло ее гравитационное поле. В такой ситуации внешнее тело не может сохранять собственную гравитацию, что приводит к нарушению целостности.

Около пятнадцати лет назад была представлена новая теория, объяснившая образование колец белых карликов сходным образом. Предположили, что первоначально карлик представлял собой звезду в центре системы планет. Небесное тело с течением времени эволюционирует, на что уходят миллиарды лет, разбухает, теряет оболочку, и это становится причиной формирования карлика, постепенно остывающего. Кстати говоря, цвет белых карликов объясняется именно их температурой. У некоторых она оценивается в 200 000 К.

Система планет в ходе такой эволюции может выжить, что приводит к расширению внешней части системы одновременно с уменьшением массы звезды. В результате формируется крупная система астероиды и многие другие элементы выживают при эволюции.

Что дальше?

Прогресс системы может привести к ее нестабильности. Это приводит к бомбардировке камнями окружающего планеты пространства, и астероиды частично вылетают из системы. Некоторые из них, однако, перемещаются на орбиты, рано или поздно оказываясь в пределах солнечного радиуса карлика. Столкновения не происходит, но приливные силы приводят к нарушению целостности тела. Скопление таких астероидов приобретает форму, сходную с окружающими Сатурн кольцами. Тем самым вокруг звезды формируется диск обломков. Существенно отличается плотность белого карлика (порядка 10^7 г/см3) и его обломочного диска.

Описанная теория стала достаточно полным и логичным объяснением ряда астрономических явлений. Посредством нее можно понять, почему диски компактны, ведь звезда не может все время своего существования окружаться диском, радиус которого сравним с солнечным, иначе первое время такие диски были бы внутри ее тела.

Объяснив формирование дисков и их размер, можно понять, откуда берется своеобразный запас металлов. Он может оказаться на звездной поверхности, загрязнив карлик металлическими молекулами. Описанная теория, не противореча выявленным показателям средней плотности белых карликов (порядка 10^7 г/см3), доказывает, по какой причине металлы наблюдаются в атмосфере звезд, почему измерение химического состава возможно доступными человеку средствами и по какой причине распределение элементов сходно с тем, что свойственно нашей планете и другим изученным объектам.

Теории: а есть ли польза?

Описанная идея получила широкое распространение как база для объяснения, по какой причине оболочки звезд загрязнены металлами, почему появились обломочные диски. Кроме того, из нее вытекает, что вокруг карлика существует планетная система. Удивительного в таком выводе мало, ведь человечество установило, что большая часть звезд имеет собственные системы планет. Это свойственно как тем, что сходны с Солнцем, так и тем, что значительно больше его габаритами - а именно из них и формируются белые карлики.

Темы не исчерпаны

Даже если считать описанную выше теорию общепринятой и доказанной, некоторые вопросы для астрономов и по сей день остаются открытыми. Особенный интерес вызывает специфика переноса вещества между дисками и поверхностью небесного тела. Как предполагают некоторые, это объясняется радиационным излучением. Теории, призывающие таким образом описать перенос вещества, основаны на эффекте Пойнтинга-Робертсона. Это явление, под влиянием которого частицы медленно перемещаются по орбите вокруг молодой звезды, постепенно спирально смещаясь к центру и пропадая в небесном теле. Предположительно, этот эффект должен проявляться на обломочных дисках, окружающих звезды, то есть молекулы, которые присутствуют в дисках, рано или поздно оказываются в исключительной близости от карлика. Твердые вещества подвержены испарению, формируется газ - таковой в виде дисков был зафиксирован вокруг нескольких наблюдаемых карликов. Рано или поздно газ доходит до поверхности карлика, перенося сюда металлы.

Выявленные факты оцениваются астрономами как существенный вклад в науку, поскольку позволяют предположить, как сформированы планеты. Это важно, так как объекты для исследований, привлекающие специалистов, зачастую недоступны. К примеру, планеты, вращающиеся вокруг превышающих Солнце габаритами звезд, крайне редко можно изучить - это слишком сложно на том техническом уровне, который доступен нашей цивилизацией. Вместо этого, люди получили возможность изучения систем планет после превращения звезд в карлики. Если удастся развиваться в этом направлении, наверняка можно будет выявить новые данные о наличии систем планет и их отличительных характеристиках.

Белые карлики, в атмосфере которых выявлены металлы, позволяют составить представление о химическом составе комет и иных космических тел. Фактически иного способа для оценки состава у ученых просто нет. К примеру, изучая планеты-гиганты, можно составить представление только о внешнем слое, но нет никакой достоверной информации о внутреннем содержании. Это касается и нашей «домашней» системы, поскольку химический состав можно изучить лишь у того небесного тела, которое упало на поверхность Земли либо того, куда удалось приземлить аппарат для исследований.

Как все происходит?

Рано или поздно наша планетарная система также станет «домом» белого карлика. Как говорят ученые, звездное ядро располагает ограниченным объемом вещества для получения энергии, и рано или поздно термоядерные реакции исчерпываются. Газ уменьшается в объемах, плотность повышается до тонны на кубический сантиметр, в то время как во внешних слоях реакция по-прежнему протекает. Звезда расширяется, становится красным гигантом, радиус которого сравним с сотнями звезд, равных Солнцу. Когда внешняя оболочка прекращает «горение», в течение 100 000 лет происходит рассеивание вещества в пространстве, что сопровождается формированием туманности.

Ядро звезды, освободившись от оболочки, понижает температуру, что и приводит к формированию белого карлика. Фактически такая звезда - это высокоплотный газ. В науке карлики нередко именуют вырожденными небесными телами. Если бы наше светило сжалось и его радиус насчитывал бы лишь несколько тысяч километров, но вес бы полностью сохранился, то здесь также имел бы место белый карлик.

Особенности и технические моменты

Рассматриваемый тип космического тела способен светиться, но этот процесс объясняется иными механизмами, отличными от термоядерных реакций. Свечение называют остаточным, оно объясняется понижением температуры. Карлик сформирован веществом, ионы которого иногда холоднее 15000 К. Элементам характерны колебательные движения. Постепенно небесное тело становится кристаллическим, его свечение ослабевает, и карлик эволюционирует в коричневый.

Ученые выявили предел массы для такого небесного тела - до 1,4 веса Солнца, но не больше этой границы. Если масса превышает этот предел, звезда существовать не может. Это объясняется давлением вещества, находящегося в сжатом состоянии - оно меньше гравитационного притяжения, сжимающего вещество. Происходит очень сильное сжатие, которое приводит к появлению нейтронов, вещество нейтронизируется.

Процесс сжатия может привести к вырождению. В этом случае формируется нейтронная звезда. Второй вариант - продолжение сжатия, рано или поздно приводящее к взрыву.

Общие параметры и особенности

Болометрическая светимость рассматриваемой категории небесных тел относительно свойственной Солнцу меньше приблизительно в десять тысяч раз. Радиус карлика меньше солнечного в сто раз, в то время как вес сравним со свойственным основной звезде нашей системы планет. Для определения границы массы для карлика был рассчитан предел Чандрасекара. При его превышении карлик эволюционирует в другую форму небесного тела. Фотосфера звезды в среднем состоит из плотного вещества, оцененного в 105-109 г/см3. В сравнении с главной звездной последовательностью это плотнее приблизительно в миллион раз.

Некоторые астрономы считают, что лишь 3% всех звезд в галактике - это белые карлики, а некоторые убеждены, что к такому классу принадлежит каждая десятая. Оценки столь сильно разнятся о причине сложности наблюдения за небесными телами - они удалены от нашей планеты и слишком слабо светятся.

Истории и имена

В 1785 в списке двойных звезд появилось тело, наблюдениями за которым занимался Гершель. Звезду назвали 40 Эридана B. Именно она считается первой увиденной человеком из категории белых карликов. В 1910 Расселл заметил, что этому небесному телу свойственен крайне низкий уровень свечения, хотя цветовая температура довольно высокая. Со временем было решено, что небесные тела такого класса необходимо выделять в отдельную категорию.

В 1844 Бессель, исследуя информацию, полученную при слежении за Проционом В, Сириусом В, решил, что обе они время от времени смещаются с прямой линии, а значит, там есть близкие спутники. Такое предположение научному сообществу показалось маловероятным, так как не удалось увидеть никакого спутника, в то время как отклонения могли бы объясниться только небесным телом, масса которого исключительно велика (аналогична Сириусу, Проциону).

В 1962 Кларк, работая с наиболее крупным телескопом из существовавших в тот момент, выявил вблизи Сириуса очень тусклое небесное тело. Именно его и назвали Сириусом В, тем самым спутником, который задолго до этого предположил Бессель. В 1896 исследования показали, что Процион также имеет спутника - он получил название Процион В. Следовательно, идеи Бесселя полностью подтвердились.

Около ста пятидесяти лет тому назад известный астроном и математик Бессель проводил наблюдения над Сириусом - самой яркой звездой неба. При этом он натолкнулся на весьма любопытное явление: обнаружил, что, двигаясь по небу, Сириус испытывает периодические отклонения от прямолинейного пути, обычного для большинства . Этот факт послужил толчком к открытию удивительных небесных тел - «белых карликов». Немало разнообразных произведений посвятили им писатели-фантасты. Но, пожалуй, еще больше интереса вызвали они у людей науки. Исследование белых карликов еще далеко не закончено. И сегодня они продолжают задавать загадки астрономам и физикам. Об этих необычных телах, об их поныне неразгаданных особенностях мы и расскажем.

СТРАННЫЙ СПУТНИК

Открытое Бесселем своеобразие движения Сириуса нашло простое объяснение. Было высказано предположение, что Сириус имеет невидимого спутника, «возмущающего» его движение. Такие двойные системы во Вселенной не редкость. Наша Земля, двигаясь вокруг , тоже испытывает, хотя и в гораздо меньшей степени, влияние своего естественного спутника - .

Вскоре это предположение подтвердилось: вблизи ожидаемого места удалось обнаружить очень тусклую звездочку. Термин «очень тусклая», правда, слишком неопределенен. Поэтому нам придется ввести специальную величину - светимость. Она измеряет количество световой энергии, излучаемой звездой за определенный промежуток времени. Так вот, светимость спутника Сириуса оказалась очень малой - в несколько сот раз меньше, чем Солнца. В то же время по степени влияния на движение Сириуса можно было определить массу спутника. И здесь неожиданно получилась весьма внушительная цифра: спутник оказался почти столь же массивным, как !

Попробуем разобраться, чем же можно объяснить причину такого резкого различия свойств спутника Сириуса и Солнца. Заметим, прежде всего, что светимость зависит главным образом от двух величин: температуры поверхности звезды и размера этой поверхности. С уменьшением этих величин светимость падает. А раз так, то объяснить малую светимость спутника можно двояко: либо температура его невысока, либо размеры его малы по сравнению с Солнцем.

Сначала ученые пошли по первому - более простому и, как оказалось, неверному - пути. Спутник Сириуса (ему было присвоено название Сириус-В) был зачислен в разряд сравнительно холодных звезд. Интерес к нему пропал: мало ли холодных звезд во Вселенной! И долгое время он не привлекал к себе особого внимания.

Но настало время, когда спокойствие астрономов нарушилось. Это произошло тогда, когда появилась возможность исследовать спектр излучения Сириуса-В и в первую очередь цветовой его состав. Дело в том, что по цвету астрономы научились оценивать температуру поверхности звезд. (Стоит напомнить, что тот же по существу физический принцип используется издавна при определении степени нагретости : ведь, разогреваясь, металл меняет цвет от темно-красного до бело-голубого.)

Короче говоря, ко всеобщему удивлению специальные исследования показали, что Сириус-В является не только не холодной, но, наоборот, очень горячей звездой. Он принадлежит к классу белых звезд и имеет поверхностную температуру порядка 8000 градусов - на 2000 градусов более высокую, чем у Солнца.

И тут встала задача по-новому объяснить малую светимость загадочного спутника. Собственно, ответ на этот вопрос был готов и раньше - пришлось вспомнить о второй возможности, которую прежде отбросили: считать, что Сириус-В чрезвычайно мал по размерам. Сделали подсчеты. И выяснилось, что радиус звезды должен быть примерно в 50 раз меньше радиуса Солнца. Иными словами Сириус-В величиной напоминает нашу Землю.

Если теперь вспомнить, что масса его близка к солнечной, то мы приходим к совершенно поразительному выводу: средняя плотность вещества Сириуса-В составляет около 105 граммов (сто килограммов) на кубический сантиметр. В 100 000 раз больше плотности воды! Ни с чем, хотя бы отдаленно похожим, человек никогда не имел дела - плотность даже самого тяжелого земного вещества не превышает 20 граммов на кубический сантиметр. Грандиозность приведенной величины читатель лучше всего почувствует, если попробует подсчитать, скольких приятелей ему придется звать на помощь, чтобы перевернуть сделанную из вещества Сириуса-В страницу нашего журнала, если б он был по старинке бумажным, а не виртуальным.

КРАСНОЕ СМЕЩЕНИЕ

Вывод, к которому мы пришли, может не всем показаться достаточно убедительным. Поэтому стоит привести и другой факт, который его подтверждает. Речь идет об эффекте так называемого «красного смещения», предсказанном знаменитым физиком Эйнштейном. Эффект заключается в том, что частота световых колебаний зависит от величины силы тяжести, действующей на пути распространения света. Если на источник света действует большая сила тяжести, чем на приемник, то и частота испускаемого света будет больше, чем принимаемого. Свет, как говорят оптики, «покраснеет» в процессе распространения от области с большей силой тяжести к области с меньшей силой тяжести.

Попробуем объяснить, почему это произойдет. Читателю, вероятно, известно, что при определенных условиях свет можно считать состоящим из частиц-фотонов. И энергия их пропорциональна частоте света. Ясно и другое: чтобы любое тело - будь то космический корабль или фотон - могло вырваться из области, где сила тяжести велика, нужно затратить определенное количество энергии. А так как фотон не снабжен никакой «ракетой-носителем», он расходует на это собственную энергию. В результате, «вырываясь из оков тяжести», он теряет свою энергию, снижает частоту световых колебаний и попадает в приемник с меньшей энергией, то есть с меньшей частотой.

На поверхности Сириуса-В сила тяжести во много раз больше, чем на Земле (притом же примерно радиусе эта звезда имеет гораздо большую массу). Поэтому пришедший с Сириуса-В свет должен иметь заметно меньшую частоту, чем свет от такого же источника, находящегося на Земле. А зная изменение частоты, нетрудно вычислить силу тяжести на поверхности Сириуса-В и тем самым проверить полученные ранее данные о его массе и радиусе. Такие исследования были проделаны. Титаническое оказалось действительно запечатленным в свете звезды.

БЕЛЫЕ КАРЛИКИ

Внимательный читатель, вероятно, уже понял, почему звезды, подобные Сириусу-В, получили это не совсем обычное для научного термина название. Но прежде чем идти дальше, полезно познакомиться с системой звезд в целом и уточнить, какое место занимают в ней белые карлики.

Здесь очень удобна так называемая диаграмма Рессела, изображенная на рисунке. Она представляет собой график, по вертикальной оси которого отложены светимости звезд, а по горизонтальной (ее принято направлять справа налево) - температуры их поверхностей. Каждой звезде на графике соответствует отдельная точка. И вот оказывается, что точки-звезды располагаются на графике не как попало. Они образуют три четко выделенные области - те, что заштрихованы.

Прежде всего, мы видим узкую длинную полосу, пересекающую график по диагонали. Это - «главная последовательность». К ней относятся обычные звезды, подобные нашему Солнцу. Справа вверху расположены «красные гиганты». Как видно из диаграммы, они имеют низкую температуру («красные»). Светимость же их высока, что возможно только в том случае, если их размеры велики («гиганты»). Наконец в левом нижнем углу находятся звезды, которым посвящена эта статья. Их температура высока («белые»), тогда как светимость, а значит и радиус малы («карлики»).

Таким образам, белые карлики - отнюдь не редкость. Они образуют отдельный ярко выраженный звездный класс. В него входит огромное число звезд, вероятно, несколько процентов общего числа звезд Галактики. Однако к настоящему моменту открыто всего около сотни белых карликов. Все они имеют массу порядка солнечной и радиус порядка земного. И все же их свойства могут заметным образом различаться.

Как видно из диаграммы Рессела, область белых карликов растянута вдоль оси температур. Малым температурам отвечают «желтые», большим - «голубые» карлики. Светимость карликов также может быть различной. Она, как правило, меньше солнечной, и иногда в десятки тысяч раз.

Гораздо важнее, однако, вопрос о том, какой величины может достигать плотность белых карликов. Мы приведем данные по одной из наиболее плотных звезд этого класса- звезде Росс-627. Она имеет массу, равную солнечной, а радиус всего 3000 километров. В 200 раз меньше солнечного и вдвое меньше земного! А средняя плотность ее вещества превышает 10: граммов (10 тонн) на кубический сантиметр! В центре звезды плотность еще выше. Факт, способный поразить воображение даже самого закаленного скептика. Однако можно думать, что и это не предел.

НОВЫЕ И СВЕРХНОВЫЕ

Рассматривая диаграмму Рессела, вы можете спросить: с чем связано наличие пустых промежутков, разделяющих звездные классы? Ответ таков: не всякая звезда устойчива. Попавшая в этот промежуток звезда сравнительно быстро меняет свои свойства и попадает в заштрихованную область диаграммы.

Мы сейчас немного отвлечемся и поговорим о неустойчивых звездах, ибо этот вопрос имеет отношение к прошлому и, возможно, будущему белых карликов. Примеров неустойчивости звезд известно много. Кратковременная и даже слабая потеря устойчивости Солнца приводит к мощным вспышкам, при которых на Земле нарушается радиосвязь, возникают магнитные бури и т. д.

Очень интересное явление представляют собой вспышки Новых звезд (или просто Новых). Слабая звезда вдруг резко увеличивает блеск и спустя короткое время затухает. При этом она «сбрасывает» свою оболочку, которая постепенно расширяется в окружающее пространство. И это может повторяться много раз подряд.

Однако самым ярким проявлением неустойчивости звезд являются совершенно исключительные по мощности вспышки Сверхновых. В 1054 году два безымянных астронома - китайский и японский - зафиксировали в своих рукописях необычное явление природы: в небе вспыхнула звезда исключительной яркости, видимая даже днем. Проведенные в наши дни измерения скорости «хлопьев» Крабовидной туманности, расположенной примерно в той же точке неба, показали, что эта туманность расширяется, причем начало расширения относится к эпохе примерно 900-летней давности. Таковы два разных этапа одного и того же явления - вспышки Сверхновой.

При подобных вспышках происходит мощный взрыв, из-за которого значительная часть массы звезды выбрасывается в окружающее пространство. В результате образуется нечто вроде «вишни»: в центре плотная косточка-звезда, вокруг рыхлая мякоть - туманность. Последняя постепенно расползается и принимает неправильные очертания.

Чем вызывается потеря устойчивости звезд? Видимо, мощными ядерными взрывами, при которых выделяется огромное количество энергии. Возможно, что значительную роль играют магнитные поля звезд. Однако полного понимания природы вспышек еще нет. В особенности это относится к Сверхновым.

После этих отступлений вернемся к нашей основной теме и поставим вопрос: как возникли белые карлики и какова их дальнейшая судьба? К сожалению, пока сказать по этому поводу можно не слишком много.

Согласно наиболее распространенной сейчас гипотезе звезды главной последовательности переходят в процессе своего развития в состояние красного гиганта. После этого происходит потеря устойчивости, оболочка звезды сбрасывается, сердцевина уплотняется и возникает белый карлик. Он является по этой гипотезе «умирающей» звездой, последним этапом эволюции звезды, как светящегося тела. Потом, остывая, он постепенно превращается в «черный» карлик и становится невидимым.

Имеются и другие точки зрения. Высказывалась гипотеза, что карлик возникает не из красного гиганта, а при вспышке Новой. Но так как подобные вспышки повторяются десятки и сотни раз, карлик отнюдь не может быть умирающей звездой. Напротив, он должен нести в себе значительные запасы энергии. Существуют и другие гипотезы, но в целом этот важный вопрос еще далек от разрешения.

У каждой звезды своя судьба и своя продолжительность жизни. Наступает момент, когда она начинает угасать.

Белые карлики – это необычные звезды. Они состоят из вещества, плотность которого чрезвычайно высока. В теории звездной эволюции они рассматриваются как заключительный этап эволюции звезд малой и средней массы, сравнимыми с массой Солнца. По разным оценкам в нашей Галактике насчитывается 3-4 % таких звезд.

Как же образуются белые карлики?


После того как в стареющей звезде выгорит весь водород, ее ядро сжимается и разогревается, - это способствует расширению ее внешних слоев. Эффективная температура звезды падает, и она превращается в красного гиганта. Разреженная оболочка звезды, очень слабо связанная с ядром, со временем рассеивается в пространстве, перетекая на соседние планеты, а на месте красного гиганта остается очень компактная звезда, называемая белым карликом.


Долгое время оставалось загадкой, почему белые карлики, имеющие температуру, превосходящую температуру Солнца, по сравнению с размерами Солнца невелики, пока не выяснилось, что плотность вещества внутри них предельно высока (в пределах 10 5 – 10 9 г/см 3). Стандартной зависимости - масса-светимость - для белых карликов не существует, что отличает их от других звезд. В чрезвычайно малом объеме «упаковано» огромное количество вещества, из-за чего плотность белого карлика почти в 100 раз больше плотности воды.

(На картинке сравнение размеров двух белых карликов с планетой Земля )

Температура белых карликов остается практически постоянной, несмотря на отсутствие внутри них термоядерных реакций. Чем же это объясняется? По причине сильного сжатия электронные оболочки атомов начинают проникать друг в друга. Это продолжается до тех пор, пока между ядрами расстояние не становится минимальным, равным радиусу наименьшей электронной оболочки. В результате ионизации электроны начинают свободно двигаться относительно ядер, а вещество внутри белого карлика приобретает физические свойства, которые характерны для металлов. В подобном веществе энергия к поверхности звезды переносится электронами, скорость которых по мере сжатия все больше увеличивается: некоторые из них двигаются со скоростью, соответствующей температуре в миллион градусов. Температура на поверхности и внутри белого карлика может резко отличаться, что не приводит к изменению диаметра звезды. Здесь можно привести сравнение с пушечным ядром – остывая, оно не уменьшается в объеме.


(На картинке звезда ван Маанена - тусклый белый карлик, находящийся в созвездии Рыб )

Угасает белый карлик крайне медленно: за сотни миллионов лет интенсивность излучения падает всего на 1%. Но в итоге он должен будет исчезнуть, превратившись в черного карлика, для чего могут потребоваться триллионы лет. Белые карлики вполне можно назвать уникальными объектами Вселенной. Воспроизвести в земных лабораториях условия, в которых они существуют, еще никому не удалось.

Немецкий астроном Фридрих Вильгельм Бессель в течение ряда лет наблюдал собственные движения на небе двух ярких звёзд - Сириуса и Проциона - и в 1844 г. установил, что обе они движутся не по прямым, а по характерным волнистым траекториям. Открытие натолкнуло учёного на мысль, что каждая из этих звёзд обладает невидимым для нас спутником, т. е. является физически двойной звёздной системой.

Предположение Бесселя вскоре подтвердилось. Американский оптик-шлифовальщик Алван Кларк 31 января 1862 г. при испытании только что изготовленного объектива диаметром 46 см открыл спутник Сириуса. Позднее, в 1896 г., был обнаружен и спутник Проциона. Через некоторое время на основании уже непосредственных телескопических наблюдений взаимного обращения этих звёзд и их спутников астрономам удалось (с помощью закона всемирного тяготения) найти массы каждого из светил. Главные звёзды, названные теперь Сириусом А и Проционом А, оказались массивнее Солнца соответственно в 2,3 и 1,8 раза, а массы их спутников - Сириуса В и Проциона В - составляют 0,98 и 0.65 солнечных масс.

Но Солнце, практически равное по массе Сириусу В, сияло бы с его расстояния почти так же ярко, как Полярная звезда. Так почему же Сириус В в течение 18 лет считался «невидимым спутником»? Может быть, из-за малого углового расстояния между ним и Сириусом А? Не только. Как потом выяснилось, он заведомо недоступен невооружённому глазу из-за своей низкой светимости, в 400 раз уступающей светимости Солнца. Правда, в самом начале XX в. это открытие не показалось особенно странным, так как звёзд малой светимости было известно достаточно много, а связь массы звезды с её светимостью ещё не была установлена. Лишь когда были получены спектры излучения Сириуса В и Проциона В, а также измерений их температуры, стала очевидной «анормальность» этих звёзд.

О чем говорит эффективная температура звезд

В физике есть такое понятие - абсолютно чёрное тело . Нет, это не синоним чёрной дыры - в отличие от неё абсолютно чёрное тело может ослепительно сиять! Абсолютно чёрным оно называется потому, что, по определению, поглощает всё падающее на него электромагнитное излучение. Теория утверждает, что полный световой поток (во всём диапазоне длин волн) с единицы поверхности абсолютно чёрного тела не зависит ни от его строения, ни от химического состава, а определяется только температурой. Согласно закону Стефана-Больцмана, светимость его пропорциональна четвёртой степени температуры. Абсолютно чёрное тело, как и идеальный газ, – это лишь физическая модель, никогда строго не реализующаяся на практике. Однако спектральный состав света звёзд в видимой области спектра довольно близок к «чернотельному». Поэтому можно считать, что модель абсолютно чёрного тела в целом, верно, описывает излучение реальной звезды.

Эффективной температурой звезды называется температура абсолютно чёрного тела, излучающего одинаковое с ней количество энергии с единицы поверхности. Она, вообще говоря, не равна температуре фотосферы звезды. И тем не менее это объективная характеристика, которую можно использовать для оценки других характеристик звезды: светимости, размеров и т. д.

В 10-е гг. XX столетия американский астроном Уолтер Адамс предпринял попытку определить эффективную температуру Сириуса В. Она составила 8000 К, а позднее выяснилось, что астроном ошибся и на самом деле она ещё выше (около 10 000 К). Следовательно, светимость этой звёздочки, если бы она имела размеры Солнца, должна была как минимум в 10 раз превосходить солнечную. Наблюдаемая же светимость Сириуса В, как мы знаем, в 400 раз меньше солнечной, т. е. она оказывается ниже ожидаемой более чем в 4 тыс. раз! Единственный выход из этого противоречия - считать, что Сириус В имеет гораздо меньшую площадь видимой поверхности, а значит, и меньший диаметр. Вычисления показали, что Сириус В по размеру всего лишь в 2,5 раза больше Земли. Но массу-то он сохраняет солнечную - выходит, его средняя плотность должна быть почти в 100 тыс. раз больше, чем у Солнца! Многие астрономы отказывались верить в существование столь экзотических объектов.

Только в 1924 г., в основном благодаря стараниям английского астрофизика Артура Эддингтона, разработавшего теорию внутреннего строения звезды. Компактные спутники Сириуса и Проциона были, наконец осознаны астрономическим сообществом как реальные представители совершенно нового класса звёзд, которые известны теперь как белые карлики. «Белые» - потому что первые представители этого типа были горячими бело-голубыми светилами, «карлики» - потому что у них очень маленькие светимости и размеры.

Результаты спектральных исследований

Как мы уже выяснили, плотность белых карликов во много тысяч раз выше, чем у обычных звёзд. А значит, их вещество должно находиться в каком-то особом, ранее неизвестном физическом состоянии. На это указывали и необычные спектры белых карликов.

Во-первых, их линии поглощения во много раз шире, чем у нормальных звёзд. Во-вторых, линии водорода могут присутствовать в спектрах белых карликов при таких высоких температурах, при каких в спектрах обычных звёзд их нет, так как весь водород оказывается ионизованным. Всё это удалось теоретически объяснить очень высоким давлением вещества в атмосферах белых карликов.

Следующей особенностью спектров этих экзотических звёзд является то, что линии всех химических элементов немного сдвинуты в красную сторону по сравнению с соответствующими линиями в спектрах, полученных в земных лабораториях. Это эффект так называемого гравитационного красного смещения, обусловленного тем, что ускорение силы тяжести на поверхности белого карлика во много раз больше, чем на Земле.

Действительно, из закона всемирного тяготения следует, что ускорение силы тяжести на поверхности звезды прямо пропорционально её массе и обратно пропорционально квадрату радиуса. Массы белых карликов близки к массам нормальных звёзд, а радиусы во много раз меньше. Поэтому ускорение силы тяжести на поверхности белых карликов очень велико: порядка 10 5 - 10 6 м/с 2 . Вспомним, что на Земле оно составляет 9,8 м/с 2 , т. е. в 10 000 - 100 000 раз меньше.

По отождествляемому химическому составу спектры белых карликов подразделяются на две категории: одни с линиями водорода, другие без линий водорода, но с линиями нейтрального либо ионизованного гелия или тяжёлых элементов. «Водородные» карлики подчас имеют существенно более высокую температуру (до 60 000 К и выше), чем «гелиевые» (11 000 - 20 000 К). На основании этого учёные пришли к выводу, что вещество последних практически лишено водорода.

Кроме того, были открыты белые карлики, спектры которых не поддавались отождествлению с известными науке химическими элементами и соединениями. Позднее у этих звёзд обнаружили магнитные поля, в 1000 – 100 000 раз более сильные, чем на Солнце. При таких напряжённостях магнитных полей спектры атомов и молекул неузнаваемо искажаются, поэтому их трудно отождествить.

Белые карлики - вырожденые звезды
В недрах белых карликов плотность может достигать величин порядка 10 10 кг/м 3 . При таких значениях плотности (и даже при меньших, характерных для внешних слоев белых карликов) физические свойства газа существенно меняются и законы идеального газа к нему уже неприменимы. В середине 20-х гг. итальянский физик Энрико Ферми разработал теорию, которая описывает свойства газов с плотностями, характерными для белых карликов. Оказалось, что давление такого газа не определяется его температурой. Оно остаётся высоким, даже если вещество остынет до абсолютного нуля! Газ, обладающий такими свойствами, получил название вырожденного .

В 1926 г. английский физик Ральф Фаулер с успехом применил теорию вырожденного газа к белым карликам (и только позднее теория Ферми нашла себе многочисленные приложения в «земной» физике). На основании этой теории были сделаны два важных вывода. Во-первых, радиус белого карлика при заданном химическом составе вещества однозначно определяется его массой. Во-вторых, масса белого карлика не может превышать некоторого критического значения, величина которого примерно 1,4 массы Солнца.

Дальнейшие наблюдения и исследования подтвердили эти теоретические предпосылки и позволили сделать окончательный вывод о том, что в недрах белых карликов практически нет водорода. Поскольку теория вырожденного газа хорошо объясняла наблюдаемые свойства белых карликов, их стали называть вырожденными звёздами . Следующим этапом стало построение теории их образования.

Как образуются белые карлики

В современной теории звездной эволюции белые карлики рассматриваются как конечный этап эволюции звёзд средней и малой массы (меньше 3 – 4 масс Солнца).

После того как в центральных областях стареющей звезды выгорит весь водород, её ядро должно сжаться и разогреться. Внешние слои при этом сильно расширяются, эффективная температура светила падает, и оно становится красным гигантом. Образовавшаяся разреженная оболочка звезды очень слабо связана с ядром, она в конце концов рассеивается в пространстве. На месте бывшего красного гиганта остаётся очень горячая и компактная звезда, состоящая в основном из гелия, - белый карлик. Благодаря своей высокой температуре она излучает главным образом в ультрафиолетовом диапазоне и ионизует газ разлетающейся оболочки.

Расширяющиеся оболочки, окружающие горячие звёзды, известны давно. Они называются планетарными туманностями и были открыты в XVIII в. Уильямом Гершелем. Их наблюдаемое число хорошо согласуется с числом красных гигантов и белых карликов, а, следовательно, и с тем, что основной механизм образования белых карликов - эволюция обычных звёзд со сбросом газовой оболочки на стадии красного гиганта.

В тесных двойных звёздных системах компоненты расположены настолько близко друг к другу, что между ними происходит обмен веществом. Раздувшаяся оболочка красного гиганта постоянно перетекает на соседнюю звезду, пока от него не останется только белый карлик. Вероятно, первые открытые представители белых карликов - Сириус В и Процион В - образовались именно таким путём.

В конце 40-х гг. советский астрофизик Самуил Аронович Каплан показал, что излучение белых карликов приводит к их остыванию. Это означает, что внутренних источников энергии у этих звёзд нет. Каплан построил и количественную теорию остывания белых карликов, а в начале 50-х гг. к аналогичным выводам пришли английские и французские учёные. Правда, из-за малой площади поверхности остывают эти звёзды крайне медленно.

Итак, большинство наблюдаемых свойств белых карликов удалось объяснить огромными значениями плотности их вещества и очень сильным гравитационным полем на их поверхностях. Это делает белые карлики уникальными объектами: воспроизвести условия, в которых находится их вещество, в земных лабораториях пока невозможно.


Б елые карлики - одна из увлекательнейших тем в истории астрономии: впервые были открыты небесные тела, обладающие свойствами, весьма далёкими от тех, с которыми мы имеем дело в земных условиях. И, по всей вероятности, разрешение загадки белых карликов положило начало исследованиям таинственной природы вещества, запрятанного где-то в разных уголках Вселенной.

Во Вселенной много белых карликов. Одно время они считались редкостью, но внимательное изучение фотопластинок, полученных в обсерватории Маунт-Паломар (США), показало, что их количество превышает 1500. Удалось оценить пространственную плотность белых карликов: оказывается, в сфере с радиусом в 30 световых лет должно находиться около 100 таких звёзд. История открытия белых карликов восходит к началу 19в, когда Фридрих Вильгельм Бессель, прослеживая движение наиболее яркой звезды Сириус, открыл, что её путь является не прямой линией, а имеет волнообразный характер. Собственное движение звезды происходило не по прямой линии; казалось, что она едва заметно смещалась из стороны в сторону. К 1844г., спустя примерно десять лет после первых наблюдений Сириуса, Бессель пришёл к выводу, что рядом с Сириусом находится вторая звезда , которая, будучи невидимой, оказывает на Сириус гравитационное воздействие; оно обнаруживается по колебаниям в движении Сириуса. Ещё более интересным оказалось то обстоятельство, что если тёмный компонент действительно существует, то период обращения обеих звёзд относительно их общего центра тяжести равен приблизительно 50 годам.

Перенесёмся в 1862г. и из Германии в Кембридж, штат Массачусетс (США). Алвану Кларку, крупнейшему строителю телескопов в США, Университетам штата Миссисипи было поручено сконструировать телескоп с объективом диаметром 18,5 дюйма (46 см), который должен был стать самым большим телескопом в мире. После того как Кларк закончил обработку линзы телескопа, нужно было проверить, обеспечена ли необходимая точность формы её поверхности. С этой целью линзу установили в подвижной трубе и направили на Сириус - самую яркую звезду, являющуюся лучшим объектом для проверки линз и выявления их дефектов. Зафиксировав положение трубы телескопа, Алван Кларк увидел слабый "призрак", который появился на восточном краю поля зрения телескопа в отблеске Сириуса. Затем, по мере движения небосвода, в поле зрения попал и сам Сириус. Его изображение было искажено - казалось, что "призрак" представляет собой дефект линзы, который следовало бы устранить, прежде чем сдать линзу в эксплуатацию. Однако эта возникшая в поле зрения телескопа слабая звёздочка оказалась компонентом Сириуса, предсказанным Бесселем. В заключение следует добавить, что из-за начавшейся первой мировой войны телескоп Кларка так никогда и не был отправлен в Миссисипи - его установили в Дирбоновской обсерватории, вблизи Чикаго, а линзу используют по сей день, но на другой установке.

Таким образом, Сириус стал предметом всеобщего интереса и многих исследований , ибо физические характеристики двойной системы заинтриговали астрономов. С учётом особенностей движения Сириуса, его расстояние до Земли и амплитуды отклонений от прямолинейного движения астрономам удалось определить характеристики обеих звёзд системы, названых Сириус А и Сириус В. Суммарная масса обеих звёзд оказалась в 3,4 раза больше массы Солнца. Было найдено, что расстояние между звёздами почти в 20 раз превышает расстояние между Солнцем и Землёй, то есть примерно равно расстоянию между Солнцем и Ураном; полученная на основании измерения параметров орбиты масса Сириуса А оказалась в 2,5 раза больше массы Солнца, а масса Сириуса В составила 95% массы Солнца. После того как были определены светимости обеих звёзд, обнаружилось, что Сириус А почти в 10 000 раз ярче, чем Сириус В. По абсолютной величине Сириуса А мы знаем, что он примерно в 35,5 раза светит сильнее Солнца. Отсюда следует, что светимость Солнца в 300 раз превышает светимость Сириуса В. Светимость любой звезды зависит от температуры поверхности звезды и её размеров, то есть диаметра. Близость второго компонента к более яркому Сириусу А чрезвычайно осложняет определение его спектра, что необходимо для установки температуры звезды. В 1915г. с использованием всех технических средств, которыми располагала крупнейшая обсерватория того времени Маунт-Вилсон (США), были получены удачные фотографии спектра Сириуса.

Это привело к неожиданному открытию: температура спутника составляла 8000 К , тогда как Солнце имеет температуру 5700 К. Таким образом, спутник в действительности оказался горячее Солнца, а это означало, что светимость единицы его поверхности также больше. В самом деле, простой расчёт показывает, что каждый сантиметр этой звезды излучает в четыре раза больше энергии, чем квадратный сантиметр поверхности Солнца. Отсюда следует, что поверхность спутника должна быть в 300*10 4 раз меньше, чем поверхность Солнца, и Сириус В должен иметь диаметр около 40 000 км. Однако масса этой звезды составляет 95% от массы Солнца. Этот значит, что огромное количество вещества должно быть упаковано в чрезвычайно малом объёме, иначе говоря, звезда должна быть плотной. В результате несложных арифметических действий получаем, что плотность спутника почти в 100 000 раз превышает плотность воды. Кубический сантиметр этого вещества на Земле весил бы 100 кг, а 0,5 л такого вещества - около 50 т.

Такова история открытия первого белого карлика. А теперь зададимся вопросом: каким образом вещество можно сжать так, чтобы один кубический сантиметр его весил 100 кг? Когда в результате высокого давления вещество сжато до больших плотностей, как в белых карликах, то вступает в действие другой тип давления, так называемое "вырожденное давление". Оно появляется при сильнейшем сжатии вещества в недрах звезды. Именно сжатие, а не высокие температуры является причиной вырожденного давления.

Вследствие сильного сжатия атомы оказываются настолько плотно упакованными, что электронные оболочки начинают проникать одна в другую . Гравитационное сжатие белого карлика происходит в течение длительного времени, и электронные оболочки продолжают проникать друг в друга до тех пор, пока расстояние между ядрами не станет порядка радиуса наименьшей электронной оболочки. Внутренние электронные оболочки представляют собой непроницаемый барьер, препятствующий дальнейшему сжатию. При максимальном сжатии электроны уже не связаны с отдельными ядрами, а свободно движутся относительно них. Процесс отделения электронов от ядер происходит в результате ионизации давлением. Когда ионизация становится полной, облако электронов движется относительно решётки из более тяжёлых ядер, так что вещество белого карлика приобретает определённые физические свойства, характерные для металлов. В таком веществе энергия переносится к поверхности электронами, подобно тому как тепло распространяется по железному пруту, нагреваемому с одного конца.

Но электронный газ проявляет и необычные свойства . По мере сжатия электронов их скорость всё больше возрастает, потому что, как мы знаем, согласно фундаментальному физическому принципу, два электрона, находящиеся в одном элементе фазового объёма, не могут иметь одинаковые энергии. Следовательно, чтобы не занимать один и тот же элемент объёма, они должны двигаться с огромными скоростями. Наименьший размер допустимого объёма зависит от диапазона скоростей электронов. Однако в среднем, чем ниже скорость электронов, тем больше тот минимальный объём, который они могут занимать. Иными словами, самые быстрые электроны занимают наименьший объём.

Хотя отдельные электроны носятся со скоростями, соответствующими внутренней температуре порядка миллионов градусов, температура полного ансамбля электронов в целом остаётся низкой. Установлено, что атомы газа обычного белого карлика образуют решётку плотно упакованных тяжёлых ядер, сквозь которую движется вырожденный электронный газ. Ближе к поверхности звезды вырождение ослабевает, и на поверхности атомы ионизированы не полностью, так что часть вещества находится в обычном газообразном состоянии. Зная физические характеристики белых карликов, мы можем сконструировать их наглядную модель. Начнём с того, что белые карлики имеют атмосферу. Анализ спектров карликов приводит к выводу, что толщина их атмосферы составляет всего несколько сотен метров. В этой атмосфере астрономы обнаруживают различные знакомые химические элементы. Известны белые карлики двух типов - холодные и горячие. В атмосферах более горячих белых карликов содержится некоторый запас водорода, хотя, вероятно, он не превышает 0,05%. Тем не менее по линиям в спектрах этих звёзд были обнаружены водород, гелий, кальций, железо, углерод и даже окись титана. Атмосферы холодных белых карликов состоят почти целиком из гелия; на водород, возможно, приходится меньше, чем один атом из миллиона. Температуры поверхности белых карликов меняются от 5000 К у "холодных" звёзд до 50 000 К у "горячих". Под атмосферой белого карлика лежит область невырожденного вещества, в котором содержится небольшое число свободных электронов. Толщина этого слоя 160 км, что составляет примерно 1% радиуса звезды. Слой этот может меняться со временем, но диаметр белого карлика остаётся постоянным и равным примерно 40 000 км.

Как правило, белые карлики не уменьшаются в размерах после того, как достигли этого состояния . Они ведут себя подобно пушечному ядру, нагретому до большой температуры; ядро может менять температуру, излучая энергию, но его размеры остаются неизменными. Чем же определяется окончательный диаметр белого карлика ? Оказывается его массой. Чем больше масса белого карлика, тем меньше его радиус; минимально возможный радиус составляет 10 000 км. Теоретически, если масса белого карлика превышает массу Солнца в 1,2 раза, его радиус может быть неограниченно малым. Именно давление вырожденного электронного газа предохраняет звезду от всяческого дальнейшего сжатия, и, хотя температура может меняться от миллионов градусов в ядре звезды до нуля на поверхности, диаметр её не меняется. Со временем звезда становится тёмным телом с тем же диаметром, который она имела, вступив в стадию белого карлика. Под верхним слоем звезды вырожденный газ практически изотермичен, то есть температура почти постоянна вплоть до самого центра звезды; она составляет несколько миллионов градусов - наиболее реальная цифра 6 млн. К.

Теперь, когда мы имеем некоторые представления о строении белого карлика, возникает вопрос : почему он светится? Очевидно одно: термоядерные реакции исключаются . Внутри белого карлика отсутствует водород, который поддерживал бы этот механизм генерации энергии. Единственный вид энергии, которым располагает белый карлик, -это тепловая энергия. Ядра атомов находятся в беспорядочном движении, так как они рассеиваются вырожденным электронным газом. Со временем движение ядер замедляется, что эквивалентно процессу охлаждения. Электронный газ, который не похож не на один из известных на Земле газов, отличается исключительной теплопроводностью, и электроны проводят тепловую энергию к поверхности, где через атмосферу эта энергия излучается в космическое пространство.

Астрономы сравнивают процесс остывания горячего белого карлика с остыванием железного прута, вынутого из огня. Сначала белый карлик охлаждается быстро, но по мере падения температуры внутри него охлаждение замедляется. Согласно оценкам, за первые сотни миллионов лет светимость белого карлика падает на 1% от светимости Солнца.

В конце концов белый карлик должен исчезнуть и стать чёрным карликом , однако на это могут понадобиться триллионы лет, и, по мнению многих учёных, представляется весьма сомнительным, чтобы возраст Вселенной был достаточно велик для появления в ней чёрных карликов. Другие астрономы считают, что и в начальной фазе, когда белый карлик ещё довольно горяч, скорость охлаждения невелика. А когда температура его поверхности падает до величины порядка температуры Солнца, скорость охлаждения увеличивается и угасание происходит очень быстро. Когда недра белого карлика достаточно остынут, они затвердеют. Так или иначе, если принять, что возраст Вселенной превышает 10 млрд. лет, красных карликов в ней должно быть намного больше, чем белых. Зная это, астрономы предпринимают поиски красных карликов.

Пока они безуспешны. Массы белых карликов определены недостаточно точно. Надёжно их можно установить для компонентов двойных систем, как в случае Сириуса. Но лишь немногие белые карлики входят в состав двойных звёзд. В трёх наиболее хорошо изученных случаях массы белых карликов, измеренные с точностью свыше 10% оказались меньше массы Солнца и составляли примерно половину её. Теоретически предельная масса для полностью вырожденной не вращающейся звезды должна быть в 1,2 раза больше массы Солнца. Однако если звёзды вращаются, а по всей вероятности, так оно и есть, то вполне возможны массы, в несколько раз превышающие солнечную.

Сила тяжести на поверхности белых карликов примерно в 60-70 раз больше, чем на Солнце. Если человек весит на Земле 75 кг, то на Солнце он весил бы 2тонны, а на поверхности белого карлика его вес составлял бы 120-140 тонн. С учётом того, что радиусы белых карликов мало отличаются и их массы почти совпадают, можно заключить, что сила тяжести на поверхности любого белого карлика приблизительно одна и та же. Во Вселенной много белых карликов. Одно время они считались редкостью, но внимательное изучение фотопластинок, полученных в обсерватории Маунт-Паломар, показало, что их количество превышает 1500. Астрономы полагают, что частота возникновения белых карликов постоянна, по крайней мере в течение последних 5 млрд. лет. Возможно, белые карлики составляют наиболее многочисленный класс объектов на небе.

Удалось оценить пространственную плотность белых карликов: оказывается, в сфере с радиусом в 30 световых лет должно находиться около 100 таких звёзд. Возникает вопрос: все ли звёзды становятся белыми карликами в конце своего эволюционного пути? Если нет, то какая часть звёзд переходит в стадию белого карлика? Важнейший шаг в решении проблемы был сделан, когда астрономы нанесли положение центральных звёзд планетарных туманностей на диаграмму температура - светимость. Чтобы разобраться в свойствах звёзд, расположенных в центре планетарных туманностей, рассмотрим эти небесные тела. На фотографиях планетарная туманность выглядит как протяжённая масса газов эллипсоидной формы со слабой, но горячей звездой в центре. В действительности эта масса представляет собой сложную турбулентную, концентрическую оболочку, которая расширяется со скоростями 15-50 км/с. Хотя эти образования выглядят как кольца, на деле они являются оболочками и скорость турбулентного движения газа в них достигает примерно 120 км/с. Оказалось, что диаметры нескольких планетарных туманностей, до которых удалось измерить расстояние, составляют порядка 1 светового года, или около 10 триллионов километров.

Расширяясь с указанными выше скоростями, газ в оболочках становится очень разряженным и не может возбуждаться, а следовательно, его нельзя увидеть спустя 100 000 лет. Многие планетарные туманности, наблюдаемые нами сегодня, родились в последние 50 000 лет, а типичный их возраст близок к 20 000 лет. Центральные звёзды таких туманностей - наиболее горячие объекты среди известных в природе. Температура их поверхности меняется от 50 000 до 1млн. К. Из-за необычайно высоких температур большая часть излучения звезды приходится на далёкую ультрафиолетовую область электромагнитного спектра.

Это ультрафиолетовое излучение поглощается , преобразуется и переизлучается газом оболочки в видимой области спектра, что и позволяет нам наблюдать оболочку. Это означает, что оболочки значительно ярче, нежели центральные звёзды, - которые на самом деле являются источником энергии, - так как огромное количество излучения звезды приходится на невидимую часть спектра. Из анализа характеристик центральных звёзд планетарных туманностей следует, что типичное значение их массы заключено в интервале 0,6-1 масса Солнца. А для синтеза тяжёлых элементов в недрах звезды необходимы большие массы. Количество водорода в этих звёздах незначительно. Однако газовые оболочки богаты водородом и гелием.

Некоторые астрономы считают, что 50-95 % всех белых карликов возникли не из планетарных туманностей . Таким образом, хотя часть белых карликов целиком связана с планетарными туманностями, по крайней мере половина или более из них произошли от нормальных звёзд главной последовательности, не проходящих через стадию планетарной туманности. Полная картина образования белых карликов туманна и неопределенна. Отсутствует так много деталей, что в лучшем случае описание эволюционного процесса можно строить лишь путём логических умозаключений. И тем не менее общий вывод таков: многие звёзды теряют часть вещества на пути к своему финалу, подобному стадии белого карлика, и затем скрываются на небесных "кладбищах" в виде чёрных, невидимых карликов. Если масса звезды примерно вдвое превышает массу Солнца, то такие звёзды на последних этапах своей эволюции теряют устойчивость. Такие звёзды могут взорваться как сверхновые, а затем сжаться до размеров шаров радиусом несколько километров, т.е. превратиться в нейтронные звёзды.

2024 med103.ru. Я самая красивая. Мода и стиль. Разные хитрости. Уход за лицом.